BBa_R0062
1
lux pR
Promoter (luxR & HSL regulated -- lux pR)
2003-01-31T12:00:00Z
2015-05-08T01:14:15Z
<em>V. fischeri</em>
Released HQ 2013
Promoter activated by LuxR in concert with HSL</p> <p>The lux cassette of V. fischeri contains a left and a right promoter. The right promoter gives weak constitutive expression of downstream genes.This expression is up-regulated by the action of the LuxR activator protein complexed with the autoinducer, 3-oxo-hexanoyl-HSL. Two molecules of LuxR protein form a complex with two molecules of the signalling compound homoserine lactone (HSL). This complex binds to a palindromic site on the promoter, increasing the rate of transcription.
false
true
_1_
0
24
7
In stock
false
<P> <P>This promoter is based on the <em>Vibrio fischeri </em>quorum sensing gene promoters. Two genes LuxI and LuxR and transcribed in opposite directions as shown below. The original sequence from which the parts <bb_part>BBa_R0062</bb_part> and <bb_part>BBa_R0063</bb_part> were derived is shown in the picture below. <p><img src="<bb_file>Image1.gif</bb_file>" width="614" height="362"><P>
true
Vinay S Mahajan, Voichita D. Marinescu, Brian Chow, Alexander D Wissner-Gross and Peter Carr
annotation7070
1
BBa_R0062
range7070
1
1
55
annotation2046
1
-35
range2046
1
20
25
annotation2047
1
-10
range2047
1
42
47
annotation2048
1
start
range2048
1
53
53
annotation2045
1
LuxR/HSL
range2045
1
1
20
BBa_B0012
1
BBa_B0012
TE from coliphageT7
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>.
Released HQ 2013
Transcription terminator for the <i>E.coli</i> RNA polymerase.
false
false
_1_
0
24
7
In stock
false
<P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator.
false
Reshma Shetty
annotation1690
1
polya
range1690
1
28
41
annotation7020
1
BBa_B0012
range7020
1
1
41
annotation1686
1
T7 TE
range1686
1
8
27
annotation1687
1
stop
range1687
1
34
34
BBa_J22090
1
J22076 J22
Unbound DnaA fraction regulatory module
2006-09-03T11:00:00Z
2015-08-31T04:08:38Z
reg
upstream
false
false
_70_44_
0
439
70
It's complicated
true
no
false
Sugat Dabholkar
component1899928
1
BBa_R0062
component1899935
1
BBa_B0012
component1899922
1
BBa_R0011
component1899932
1
BBa_J22086
component1899933
1
BBa_B0010
annotation1899932
1
BBa_J22086
range1899932
1
127
251
annotation1899933
1
BBa_B0010
range1899933
1
260
339
annotation1899935
1
BBa_B0012
range1899935
1
348
388
annotation1899922
1
BBa_R0011
range1899922
1
1
54
annotation1899928
1
BBa_R0062
range1899928
1
64
118
BBa_R0011
1
lacI+pL
Promoter (lacI regulated, lambda pL hybrid)
2003-01-31T12:00:00Z
2015-05-08T01:14:14Z
represillator of Elowitz and Leibler (2000)
Released HQ 2013
Inverting regulatory region controlled by LacI (<bb_part>BBa_C0010</bb_part>, <bb_part>BBa_C0011</bb_part>, etc.) <p> The PLlac 0-1 promoter is a hybrid regulatory region consisting of the promoter P(L) of phage lambda with the cI binding sites replaced with lacO1. The hybrid design allows for strong promotion that can nevertheless be tightly repressed by LacI, the Lac inhibitor (i.e. repressor) (<bb_part>BBa_C0010</bb_part>) ([LUTZ97]). The activity of the promoter can be regulated over a >600-fold range by IPTG in E.Coli DH5-alpha-Z1 (same paper reference).
false
true
_1_
0
24
7
In stock
false
<P> <P>hybrid promoter design to create strong promoter that is, at the same time, highly repressible. note that the upstream operator installed in this hybrid is slightly different than the one in the original source (Lutz and Bujard, 1997). the most upstream operator region is slightly truncated in the represillator version, so that both operators in the hybrid are the same sequence. see references for details. also, the sequence has been truncated after the transcriptional start site.<P>LacI binds to this regulator. This part is incompatible with species containing active LacI coding regions. Lactose and IPTG disable the operation of LacI and increase transcription. This part is incompatible with environments containing lactose or lactose analogs.
true
Neelaksh Varshney, Grace Kenney, Daniel Shen, Samantha Sutton
annotation2000
1
-35
range2000
1
20
25
annotation2001
1
lac O1
range2001
1
26
42
annotation7064
1
BBa_R0011
range7064
1
1
54
annotation2002
1
-10
range2002
1
43
48
annotation1999
1
lac O1
range1999
1
3
19
BBa_J22086
1
BBa_J22086
pX (DnaA binding site)
2006-09-03T11:00:00Z
2015-08-31T04:08:38Z
ref
This part is used to sequester free (cytoplasmic) DnaA protein.
false
false
_70_44_
0
439
70
Not in stock
false
no
false
Sugat Dabholkar
BBa_B0010
1
BBa_B0010
T1 from E. coli rrnB
2003-11-19T12:00:00Z
2015-08-31T04:07:20Z
Transcriptional terminator consisting of a 64 bp stem-loop.
false
false
_1_
0
24
7
In stock
false
true
Randy Rettberg
annotation4184
1
stem_loop
range4184
1
12
55
annotation7018
1
BBa_B0010
range7018
1
1
80
BBa_B0010_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc
BBa_R0062_sequence
1
acctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaa
BBa_J22086_sequence
1
tcgagtctcgtttcccgctccaaattcttctctcaataaaatatccacagcgacgcgatgcgttattgctggtttttgttgtctctgacaaactcttgtaaacagagttatccacagcctcaggc
BBa_J22090_sequence
1
aattgtgagcggataacaattgacattgtgagcggataacaagatactgagcacatactagagacctgtaggatcgtacaggtttacgcaagaaaatggtttgttatagtcgaataaatactagagtcgagtctcgtttcccgctccaaattcttctctcaataaaatatccacagcgacgcgatgcgttattgctggtttttgttgtctctgacaaactcttgtaaacagagttatccacagcctcaggctactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_B0012_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_R0011_sequence
1
aattgtgagcggataacaattgacattgtgagcggataacaagatactgagcaca
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
James Alastair McLaughlin
Chris J. Myers
2017-03-06T15:00:00.000Z