BBa_K143013
1
P43
Promoter 43 a constitutive promoter for B. subtilis
2008-09-10T11:00:00Z
2015-05-08T01:10:23Z
The part was designed using the sequence from the ''B.subtilis'' genome and from previously published papers <cite>2</cite>. This sequence was then synthesised by Geneart.
Promoter 43 is a constitutive promoter that constitutively expresses the P43 protein in ''B.subtilis''. This promoter has been shown to be recognized and active during the exponential and lag phases of growth. It has been hypothesized that the ability to recognize the promoter in exponential and lag phase of growth is due to the recognition of the promoter by both sigma factor 55 (the major sigma factor) and sigma factor 37 (the lag phase sigma factor) <cite>1</cite>. The P43 promoter has been previously used for constitutive expression of exogenous genes within ''B.subtilis'' vectors <cite>2</cite>. The context with which we used the promoter P43 is as a '''Polymerase Per Second''' (PoPS) generator.
false
false
_199_
0
2090
9
Not in stock
false
The biobrick part was designed to include the binding sites for both the sigma factor A and B. In addition the biobrick standard was applied to the promoter P43 sequence.
false
James Chappell
annotation1975706
1
Sigma B -35
range1975706
1
14
22
annotation1975708
1
Sigma A -35
range1975708
1
24
29
annotation1975707
1
Sigma B -10
range1975707
1
38
47
annotation1975709
1
Sigma A -10
range1975709
1
47
52
BBa_K143020
1
RBS-GsiB
GsiB ribosome binding site (RBS) for B. subtilis
2008-09-14T11:00:00Z
2015-05-08T01:10:23Z
The sequence was taken from a previous research paper [1] and was constructed by Geneart
GsiB is an endogenous ribosome binding site from ''B.subtilis''. The sequence of the gsiB ribosome binding site is '''AAAGGAGG''' which is complementary to the sequence '''UUUCCUCC''' from the 3' region of the 16s rRNA from ''B.subtilis''.
GsiB is an endogenous ribosome binding site (RBS) from ''B.subtilis''. The sequence of the gsiB ribosome binding site is '''AAAGGAGG''' which is complementary to the sequence '''UUUCCUCC''' from the 3' region of the 16s rRNA from ''B.subtilis''. Previous research showed that the predicted binding energy of the 16s rRNA to the RBS is -9.3kcal.
false
false
_199_
0
2090
9
Not in stock
false
In order to ensure that the RBS is functional the actual ribosome binding site was maintained and the distance between the RBS and the start codon maintained. In order to conform to the biobrick standard the sequence flanking the RBS had to be changed but the distance between the promoter and RBS, and start codon and RBS was maintained.
false
James Chappell
annotation1975872
1
rbs
range1975872
1
2
8
BBa_J31005
1
CmR
chloramphenicol acetyltransferase (forwards, CmF) [cf. BBa_J31004]
2006-07-11T11:00:00Z
2015-08-31T04:08:45Z
pSB1AC3
When a promoter and an RBS are in front of the gene, the cell will express Chloramphenicol resistance. Because it contains full biobrick ends, this part can be used to easily add chloramphenicol resistance to any part without changing plasmid vectors.
false
true
_61_
0
918
61
In stock
true
This part is cloned into pSB1A2.
true
Erin Zwack, Sabriya Rosemond
annotation1884999
1
CmR gene
range1884999
1
1
660
BBa_B0012
1
BBa_B0012
TE from coliphageT7
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>.
Released HQ 2013
Transcription terminator for the <i>E.coli</i> RNA polymerase.
false
false
_1_
0
24
7
In stock
false
<P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator.
false
Reshma Shetty
annotation1687
1
stop
range1687
1
34
34
annotation1690
1
polya
range1690
1
28
41
annotation1686
1
T7 TE
range1686
1
8
27
annotation7020
1
BBa_B0012
range7020
1
1
41
BBa_B0010
1
BBa_B0010
T1 from E. coli rrnB
2003-11-19T12:00:00Z
2015-08-31T04:07:20Z
Transcriptional terminator consisting of a 64 bp stem-loop.
false
false
_1_
0
24
7
In stock
false
true
Randy Rettberg
annotation7018
1
BBa_B0010
range7018
1
1
80
annotation4184
1
stem_loop
range4184
1
12
55
BBa_K143071
1
BBa_K143071
AmyE integratable PoPS generator (P43-gsiB) (with CmR)
2008-10-27T12:00:00Z
2015-05-08T01:10:24Z
The amyE 5' integration sequence was PCR cloned from the ''B. subtilis'' integration vector utilising Pfu DNA polymerase and cloned into a BioBrick with the P43-gsiB that was synthesised by GeneArt and Chloramphenicol adenyltransferase and the double terminator that were obtained from the registry.
AmyE 5' Integration sequence(<bbpart>BBa_K143001</bbpart>) coupled to a chloramphenicol resistance generator in closed transcriptional unit (Parts <bbpart>BBa_K143050</bbpart> and <bbpart>BBa_K143064</bbpart>) and the PoPS generator P43-gsiB (<bbpart>BBa_K143050</bbpart>).
The amyE 5' integration sequence allows integration into the ''B. subtilis'' genome at the amyE locus if the 3' amyE integration sequence(<bbpart>BBa_K143002</bbpart>) is cloned onto the 3' end of the construct.
The chloramphenicol adenyltransferase give resistance to chloramphenicol while the terminator prevents readthrough.
The P43-gsiB promoter and RBS for ''B. subtilis'' constitutively generate a PoPS output.
false
false
_199_
0
3475
9
It's complicated
false
The amyE 5' integration sequence was PCR cloned from the ''B. subtilis'' integration vector pDR111 utilising Pfu DNA polymerase. The sequence of P43-gsiB was obtained from papers. Chloramphenicol adenyltransferase and the double terminator were obtained from the registry.
false
Chris Hirst
component1991850
1
BBa_K143020
component1991835
1
BBa_K143020
component1991848
1
BBa_K143013
component1991828
1
BBa_K143001
component1991837
1
BBa_J31005
component1991833
1
BBa_K143013
component1991838
1
BBa_B0010
component1991840
1
BBa_B0012
annotation1991850
1
BBa_K143020
range1991850
1
1481
1491
annotation1991848
1
BBa_K143013
range1991848
1
1417
1472
annotation1991837
1
BBa_J31005
range1991837
1
612
1271
annotation1991838
1
BBa_B0010
range1991838
1
1280
1359
annotation1991840
1
BBa_B0012
range1991840
1
1368
1408
annotation1991833
1
BBa_K143013
range1991833
1
531
586
annotation1991828
1
BBa_K143001
range1991828
1
1
522
annotation1991835
1
BBa_K143020
range1991835
1
595
605
BBa_K143001
1
amyE 5 IS
5??? Integration Sequence for the amyE locus of B. subtilis
2008-08-26T11:00:00Z
2015-05-08T01:10:23Z
The 5??? integration sequence was taken from the shuttle vector pDR111 which has been used in many studies on ''B.subtilis'', in particular in the studies of transcriptional control<cite>#1 #2 #3</cite>
<biblio>
#1 pmid=14597697
#2 pmid=15937167
#3 pmid=12169614
</biblio>
Released HQ 2013
The 5' integration sequence can be added to the front of a Biobrick construct and the 3' integration sequence specific for this locus (Part BBa_K143002) to the rear of the Biobrick construct to allow integration of the Biobrick construct into the chromosome of the gram positive bacterium B.subtilis. The AmyE locus was the first locus used for integration into ''B.subtilis'' by Shimotsu and Henner<cite>#1</cite> and is still commonly used in vectors such as pDR111<cite>#2</cite>, pDL<cite>#3</cite> and their derivatives. Integration at the AmyE locus removes the ability of ''B.subtilis'' to break down starch, which can be assayed with iodine as described by Cutting and Vander-horn<cite>#4</cite>. The 5' and 3' integration sequences for the AmyE locus were used to integrate the Imperial 2008 iGEM project primary construct into the ''B.sutbilis'' chromosome.
<biblio>
#1 pmid=3019840
#2 pmid=14597697
#3 ''Bacillus'' Genetic Stock Center [www.bgsc.org]
#4 Cutting, S M.; Vander-Horn, P B. Genetic analysis. In: Harwood C R, Cutting S M. , editors. Molecular biological methods for Bacillus. Chichester, England: John Wiley & Sons, Ltd.; 1990. pp. 27???74.
</biblio>
false
false
_199_
0
3475
9
In stock
true
The AmyE integration sequence was taken from the vector after comparison by BLAST to the ''B.subtilis'' chromosome to identify the homologous sequences. The sequence present in both the host chromosome and the plasmid at the 5' end of the gene is the 5' sequence required for integration.
true
Chris Hirst
annotation1974145
1
5' AmyE homologous sequence
range1974145
1
1
522
BBa_B0010_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc
BBa_K143013_sequence
1
attttacatttttagaaatgggcgtgaaaaaaagcgcgcgattatgtaaaatataa
BBa_B0012_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_K143020_sequence
1
taaaggaggaa
BBa_J31005_sequence
1
atggagaaaaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccggaatttcgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggcggggcgtaa
BBa_K143001_sequence
1
atgtttgcaaaacgattcaaaacctctttactgccgttattcgctggatttttattgctgtttcatttggttctggcaggaccggcggctgcgagtgctgaaacggcgaacaaatcgaatgagcttacagcaccgtcgatcaaaagcggaaccattcttcatgcatggaattggtcgttcaatacgttaaaacacaatatgaaggatattcatgatgcaggatatacagccattcagacatctccgattaaccaagtaaaggaagggaatcaaggagataaaagcatgtcgaactggtactggctgtatcagccgacatcgtatcaaattggcaaccgttacttaggtactgaacaagaatttaaagaaatgtgtgcagccgctgaagaatatggcataaaggtcattgttgacgcggtcatcaatcataccaccagtgattatgccgcgatttccaatgaggttaagagtattccaaactggacacatggaaacacacaaattaaaaactggtctgatcga
BBa_K143071_sequence
1
atgtttgcaaaacgattcaaaacctctttactgccgttattcgctggatttttattgctgtttcatttggttctggcaggaccggcggctgcgagtgctgaaacggcgaacaaatcgaatgagcttacagcaccgtcgatcaaaagcggaaccattcttcatgcatggaattggtcgttcaatacgttaaaacacaatatgaaggatattcatgatgcaggatatacagccattcagacatctccgattaaccaagtaaaggaagggaatcaaggagataaaagcatgtcgaactggtactggctgtatcagccgacatcgtatcaaattggcaaccgttacttaggtactgaacaagaatttaaagaaatgtgtgcagccgctgaagaatatggcataaaggtcattgttgacgcggtcatcaatcataccaccagtgattatgccgcgatttccaatgaggttaagagtattccaaactggacacatggaaacacacaaattaaaaactggtctgatcgatactagagattttacatttttagaaatgggcgtgaaaaaaagcgcgcgattatgtaaaatataatactagagtaaaggaggaatactagatggagaaaaaaatcactggatataccaccgttgatatatcccaatggcatcgtaaagaacattttgaggcatttcagtcagttgctcaatgtacctataaccagaccgttcagctggatattacggcctttttaaagaccgtaaagaaaaataagcacaagttttatccggcctttattcacattcttgcccgcctgatgaatgctcatccggaatttcgtatggcaatgaaagacggtgagctggtgatatgggatagtgttcacccttgttacaccgttttccatgagcaaactgaaacgttttcatcgctctggagtgaataccacgacgatttccggcagtttctacacatatattcgcaagatgtggcgtgttacggtgaaaacctggcctatttccctaaagggtttattgagaatatgtttttcgtctcagccaatccctgggtgagtttcaccagttttgatttaaacgtggccaatatggacaacttcttcgcccccgttttcaccatgggcaaatattatacgcaaggcgacaaggtgctgatgccgctggcgattcaggttcatcatgccgtttgtgatggcttccatgtcggcagaatgcttaatgaattacaacagtactgcgatgagtggcagggcggggcgtaatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatactagagattttacatttttagaaatgggcgtgaaaaaaagcgcgcgattatgtaaaatataatactagagtaaaggaggaa
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
James Alastair McLaughlin
Chris J. Myers
2017-03-06T15:00:00.000Z