BBa_K1616014 1 VVD VVD - homodimer photoreceptor 2015-09-17T11:00:00Z 2015-09-18T02:54:35Z VVD was isolated from Neurospora crassa. Among other photoreceptors, Vivid (VVD) is the smallest known Light???oxygen???voltage (LOV) domain protein and photo-inducible dimer. Isolated from Neurospora crassa, VVD forms a homo-dimer in response to a blue-light stimulus. The LOV domain, present in VVD, is a small blue-light sensing domain found in prokaryotes, fungi and plants. After blue-light activation, a covalent bond is formed between the co-factor Flavin mononucleotide (FMN) and one of the cysteine residue. This bond leads to a conformational change inducing functions by dissociating the C-terminal a-helix (Ja) and the LOV-core. In VVD, this undock triggers homodimerization (Bilwes, Dunlap, & Crane, 2007; M??ller & Weber, 2013). Contrary to other photoreceptors, VVD is a small protein with 150 amino-acids facilitating accurate molecular design and avoiding steric issues. Moreover, it is a homo-dimer when most of photo-inducible dimers are heterodimers. In addition, the use of VVD is easy; and doesn???t need any addition of co-factors: VVD works with Flavin adenine dinucleotide (FAD) which is already abundant in eukaryote and prokaryote cells (M??ller & Weber, 2013; Nihongaki, Suzuki, Kawano, & Sato, 2014). false false _2033_ 22805 22805 9 false We found illegal sites (PstI) into VVD sequence, those one have been removed. false Johanna Chesnel annotation2470046 1 VVD range2470046 1 1 450 BBa_K1616017 1 YFP-N YN155 - N terminal YFP split 2015-09-17T11:00:00Z 2016-01-21T02:25:38Z This part works with BBa_K16160016 A split protein is a protein whose sequence has been divided into two (or more) different parts. Often used to study protein-protein interactions, the protein can not perform its function until the parts are put back together. For instance, YFP, the yellow-fluorescent protein, will only express fluorescence when its two parts will be reunited. In normal condition, the production of a protein in response to a stimulus can easily reach several hours due to the many steps required for the protein synthesis. By using split-proteins, we are taking advantage of the absence of fluorescence when the two parts are apart. Indeed, the two parts of our split-YFP, when remaining separated, can be produced without being effective. Therefore, the overall process is far less time-consuming. However, to implement a light control on the fluorescence activation, a genetic construction gathering the VVD photoreceptor and our split-YFP has to be engineered. The new alternative approach for the visualization of protein interactiosn has been developed; the biomolecular fluorescence complementation (BiFC) techniques based on the complementation between fragments of fluorescent proteins; fragments of the yellow fluorescent protein (YFP) brought together by the association of two interaction partners fused to the fragments. They noticed that the spectral characteristics of BiFC of YFP were virtually identical to those of intact YFP.(Chang-Deng Hu, 2003) false false _2033_ 4206 22805 9 false Illegal sites have been checked. false Johanna Chesnel annotation2470148 1 YN155 range2470148 1 1 468 BBa_K1616018 1 Linker-JUN Linker JUN of 5 aa 2015-09-17T11:00:00Z 2015-09-18T03:37:41Z Linker used in association with YFP Nterminal split and VVD. This part is a sequence coding for 5 aa useful to link VVD and YFP N terminal split protein. false false _2033_ 22805 22805 9 false Illegal sites have been checked false Johanna Chesnel annotation2470177 1 linker JUN range2470177 1 1 15 BBa_K1616020 1 VVD-YN VVD linked to YN155 (YFP Nter split) 2015-09-17T11:00:00Z 2015-09-18T04:55:03Z Assembly of 3 parts: BBa_K1616014, BBa_K1616018 and BBa_K1616017 without scars See BBa_K1616002. This part have been created in order to have the three parts without scars (VVD,linker and YFP Nterminal). false false _2033_ 22805 22805 9 false No separation between the 3 parts. false Johanna Chesnel component2471071 1 BBa_K1616014 component2471075 1 BBa_K1616017 component2471073 1 BBa_K1616018 annotation2471075 1 BBa_K1616017 range2471075 1 466 933 annotation2471071 1 BBa_K1616014 range2471071 1 1 450 annotation2471073 1 BBa_K1616018 range2471073 1 451 465 BBa_K1616017_sequence 1 atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggccttcaatgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggcctag BBa_K1616014_sequence 1 cacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagag BBa_K1616020_sequence 1 cacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagagatccatcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggccttcaatgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggcctag BBa_K1616018_sequence 1 agatccatcgccacc igem2sbol 1 iGEM to SBOL conversion Conversion of the iGEM parts registry to SBOL2.1 Chris J. Myers James Alastair McLaughlin 2017-03-06T15:00:00.000Z