BBa_K1616018
1
Linker-JUN
Linker JUN of 5 aa
2015-09-17T11:00:00Z
2015-09-18T03:37:41Z
Linker used in association with YFP Nterminal split and VVD.
This part is a sequence coding for 5 aa useful to link VVD and YFP N terminal split protein.
false
false
_2033_
22805
22805
9
false
Illegal sites have been checked
false
Johanna Chesnel
annotation2470177
1
linker JUN
range2470177
1
1
15
BBa_K1616017
1
YFP-N
YN155 - N terminal YFP split
2015-09-17T11:00:00Z
2016-01-21T02:25:38Z
This part works with BBa_K16160016
A split protein is a protein whose sequence has been divided into two (or more) different parts. Often used to study protein-protein interactions, the protein can not perform its function until the parts are put back together. For instance, YFP, the yellow-fluorescent protein, will only express fluorescence when its two parts will be reunited.
In normal condition, the production of a protein in response to a stimulus can easily reach several hours due to the many steps required for the protein synthesis. By using split-proteins, we are taking advantage of the absence of fluorescence when the two parts are apart. Indeed, the two parts of our split-YFP, when remaining separated, can be produced without being effective. Therefore, the overall process is far less time-consuming. However, to implement a light control on the fluorescence activation, a genetic construction gathering the VVD photoreceptor and our split-YFP has to be engineered.
The new alternative approach for the visualization of protein interactiosn has been developed; the biomolecular fluorescence complementation (BiFC) techniques based on the complementation between fragments of fluorescent proteins; fragments of the yellow fluorescent protein (YFP) brought together by the association of two interaction partners fused to the fragments. They noticed that the spectral characteristics of BiFC of YFP were virtually identical to those of intact YFP.(Chang-Deng Hu, 2003)
false
false
_2033_
4206
22805
9
false
Illegal sites have been checked.
false
Johanna Chesnel
annotation2470148
1
YN155
range2470148
1
1
468
BBa_K1616020
1
VVD-YN
VVD linked to YN155 (YFP Nter split)
2015-09-17T11:00:00Z
2015-09-18T04:55:03Z
Assembly of 3 parts: BBa_K1616014, BBa_K1616018 and BBa_K1616017 without scars
See BBa_K1616002.
This part have been created in order to have the three parts without scars (VVD,linker and YFP Nterminal).
false
false
_2033_
22805
22805
9
false
No separation between the 3 parts.
false
Johanna Chesnel
component2471071
1
BBa_K1616014
component2471073
1
BBa_K1616018
component2471075
1
BBa_K1616017
annotation2471071
1
BBa_K1616014
range2471071
1
1
450
annotation2471073
1
BBa_K1616018
range2471073
1
451
465
annotation2471075
1
BBa_K1616017
range2471075
1
466
933
BBa_I712074
1
BBa_I712074
T7 promoter (strong promoter from T7 bacteriophage)
2007-10-21T11:00:00Z
2015-08-31T04:07:46Z
T7 bacteriophage
T7 promoter is very specific promoter which is transcribed only by specific T7 RNA polymerase. Usually this promoter is used in expression systems where T7 promoter is cotransfected with T7 RNA polymerase. That ensures strong transcription of desired genes.
false
false
_130_
0
1856
9
In stock
false
true
Rok Gaber
BBa_K1616002
1
VVD-YN
VVD linked to YN155 (YFP Nter split) with double terminator T7
2015-09-16T11:00:00Z
2015-09-22T06:42:24Z
Assembly the sequence of photoreceptor VVD (without illegal site), a linker(1) and then the N terminal of YFP split(1)
Vivid (VVD) is the smallest known Light???oxygen???voltage (LOV) domain protein and photo-inducible dimer. Isolated from Neurospora crassa, VVD forms a homodimer in response to a blue-light stimulus. Then, a split protein is a protein whose sequence has been divided into two (or more) different parts. The yellow-fluorescent (YFP) protein will only express fluorescence when its two parts will be reunited. The part is coding for the homodimer VVD links by an integration of specific sequence to the N terminal of the YFP split. The downstream part of this composite is double T7 terminator (BBa_B0015).
So, this part works with BBa_K1616001. In absence of blue-light, the conformation of the VVD photoreceptor will prevent the formation of the complete fluorescent protein while in presence of the light signal the YFP protein will be reconstituted leading to the fast expression of a yellow fluorescence in our bacteria.
false
false
_2033_
22805
22805
9
true
(1) Tom Kerppola, Ph. D, investigator at the Howard Hughes Medical Institute as well as Professor in the University of Michigan
Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002;9(4):789???98.
false
Johanna Chesnel
component2471090
1
BBa_B0015
component2471083
1
BBa_K1616020
component2471076
1
BBa_J61100
annotation2471090
1
BBa_B0015
range2471090
1
962
1090
annotation2471083
1
BBa_K1616020
range2471083
1
21
953
annotation2471076
1
BBa_J61100
range2471076
1
1
12
BBa_K1616001
1
VVD-YC
VVD linked to YC155 (YFP Cter split) with promoter T7
2015-09-16T11:00:00Z
2015-09-22T06:42:02Z
This part have been created thank to gblock, our team have assembled the sequence of photoreceptor VVD (without illegal site), a linker(1) and then the C terminal of YFP split(1).
(1) Tom Kerppola, Ph. D, investigator at the Howard Hughes Medical Institute as well as Professor in the University of Michigan
Vivid (VVD) is the smallest known Light???oxygen???voltage (LOV) domain protein and photo-inducible dimer. Isolated from Neurospora crassa, VVD forms a homo-dimer in response to a blue-light stimulus.
Then, a split protein is a protein whose sequence has been divided into two (or more) different parts. The yellow-fluorescent (YFP) protein will only express fluorescence when its two parts will be reunited.
The Part is coding for the homodimer VVD link by an integration of specific sequence to the C terminal of the YFP split.
So, this part works with BBa_K1616002. In absence of blue-light, the conformation of the VVD photoreceptor will prevent the formation of the complete fluorescent protein while in presence of the light signal the YFP protein will be reconstituted leading to the fast expression of a yellow fluorescence in our bacteria.
false
false
_2033_
22805
22805
9
true
The sequence of VVD had 2 illegal sites PstI; that have been removed.
false
Johanna Chesnel
component2471216
1
BBa_I712074
component2471217
1
BBa_J61100
component2471224
1
BBa_K1616021
annotation2471217
1
BBa_J61100
range2471217
1
55
66
annotation2471216
1
BBa_I712074
range2471216
1
1
46
annotation2471224
1
BBa_K1616021
range2471224
1
75
830
BBa_K1616016
1
YFP-C
YC155 - C terminal YFP split
2015-09-17T11:00:00Z
2016-01-21T02:25:51Z
This part works with BBa_K16160017.
A split protein is a protein whose sequence has been divided into two (or more) different parts. Often used to study protein-protein interactions, the protein can not perform its function until the parts are put back together. For instance, YFP, the yellow-fluorescent protein, will only express fluorescence when its two parts will be reunited.
In normal condition, the production of a protein in response to a stimulus can easily reach several hours due to the many steps required for the protein synthesis. By using split-proteins, we are taking advantage of the absence of fluorescence when the two parts are apart. Indeed, the two parts of our split-YFP, when remaining separated, can be produced without being effective. Therefore, the overall process is far less time-consuming. However, to implement a light control on the fluorescence activation, a genetic construction gathering the VVD photoreceptor and our split-YFP has to be engineered.
The new alternative approach for the visualization of protein interactiosn has been developed; the biomolecular fluorescence complementation (BiFC) techniques based on the complementation between fragments of fluorescent proteins; fragments of the yellow fluorescent protein (YFP) brought together by the association of two interaction partners fused to the fragments. They noticed that the spectral characteristics of BiFC of YFP were virtually identical to those of intact YFP.(Chang-Deng Hu, 2003)
false
false
_2033_
4206
22805
9
false
Illegal sites have been checked.
false
Johanna Chesnel
annotation2470135
1
YC155
range2470135
1
1
255
BBa_B0012
1
BBa_B0012
TE from coliphageT7
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>.
Released HQ 2013
Transcription terminator for the <i>E.coli</i> RNA polymerase.
false
false
_1_
0
24
7
In stock
false
<P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator.
false
Reshma Shetty
annotation7020
1
BBa_B0012
range7020
1
1
41
annotation1687
1
stop
range1687
1
34
34
annotation1690
1
polya
range1690
1
28
41
annotation1686
1
T7 TE
range1686
1
8
27
BBa_K1616015
1
Linker-FOS
Linker FOS of 17 aa
2015-09-17T11:00:00Z
2015-09-18T03:09:19Z
Linker used in association with VVD (BBa_K1616014)
This part is a sequence coding for 17 aa useful to link two proteins
false
false
_2033_
22805
22805
9
false
Illegal sites have been checked
false
Johanna Chesnel
annotation2470111
1
linker
range2470111
1
1
51
BBa_K1616021
1
VVD-YC
VVD linked to YC155 (YFP Cter split)
2015-09-17T11:00:00Z
2015-09-18T05:28:45Z
Assembly of 3 parts: BBa_K1616014, BBa_K1616015 and BBa_K1616016 without scar
See BBa_K1616001. This part have been created in order to have the three parts without scars (VVD,linker and YFP Nterminal).
false
false
_2033_
22805
22805
9
false
No separation between the 3 parts.
false
Johanna Chesnel
component2471215
1
BBa_K1616016
component2471211
1
BBa_K1616014
component2471213
1
BBa_K1616015
annotation2471213
1
BBa_K1616015
range2471213
1
451
501
annotation2471215
1
BBa_K1616016
range2471215
1
502
756
annotation2471211
1
BBa_K1616014
range2471211
1
1
450
BBa_K1616024
1
BBa_K1616024
VVD and YFP complex
2015-09-17T11:00:00Z
2016-01-25T11:10:05Z
Assembly of the 2 parts of VVD and split YFP
Vivid (VVD) is the smallest known Light???oxygen???voltage (LOV) domain protein and photo-inducible dimer. Isolated from Neurospora crassa, VVD forms a homodimer in response to a blue-light stimulus. Then, a split protein is a protein whose sequence has been divided into two (or more) different parts. The yellow-fluorescent (YFP) protein will only express fluorescence when its two parts will be reunited. The part is coding for the homodimer VVD links by an integration of specific sequence to the N terminal of the YFP split. The downstream part of this composite is double T7 terminator (BBa_B0015).
So, this part works with BBa_K1616001. In absence of blue-light, the conformation of the VVD photoreceptor will prevent the formation of the complete fluorescent protein while in presence of the light signal the YFP protein will be reconstituted leading to the fast expression of a yellow fluorescence in our bacteria.
false
false
_2033_
4206
22805
9
false
The sequence of VVD had 2 illegal sites PstI; that have been removed. Also, the N terminal of YFP had 1 illegal site PstI
false
Johanna Chesnel
component2472434
1
BBa_K1616001
component2472450
1
BBa_K1616002
annotation2472450
1
BBa_K1616002
range2472450
1
839
1928
annotation2472434
1
BBa_K1616001
range2472434
1
1
830
BBa_B0010
1
BBa_B0010
T1 from E. coli rrnB
2003-11-19T12:00:00Z
2015-08-31T04:07:20Z
Transcriptional terminator consisting of a 64 bp stem-loop.
false
false
_1_
0
24
7
In stock
false
true
Randy Rettberg
annotation7018
1
BBa_B0010
range7018
1
1
80
annotation4184
1
stem_loop
range4184
1
12
55
BBa_J61100
1
BBa_J61100
Ribosome Binding Site Family Member
2007-01-28T12:00:00Z
2015-08-31T02:03:00Z
N/A
{{JCA_Arkin_RBSFamily}}
false
true
_95_
0
483
95
In stock
false
N/A
true
John Anderson
BBa_K1616014
1
VVD
VVD - homodimer photoreceptor
2015-09-17T11:00:00Z
2015-09-18T02:54:35Z
VVD was isolated from Neurospora crassa.
Among other photoreceptors, Vivid (VVD) is the smallest known Light???oxygen???voltage (LOV) domain protein and photo-inducible dimer. Isolated from Neurospora crassa, VVD forms a homo-dimer in response to a blue-light stimulus. The LOV domain, present in VVD, is a small blue-light sensing domain found in prokaryotes, fungi and plants. After blue-light activation, a covalent bond is formed between the co-factor Flavin mononucleotide (FMN) and one of the cysteine residue. This bond leads to a conformational change inducing functions by dissociating the C-terminal a-helix (Ja) and the LOV-core. In VVD, this undock triggers homodimerization (Bilwes, Dunlap, & Crane, 2007; M??ller & Weber, 2013).
Contrary to other photoreceptors, VVD is a small protein with 150 amino-acids facilitating accurate molecular design and avoiding steric issues. Moreover, it is a homo-dimer when most of photo-inducible dimers are heterodimers. In addition, the use of VVD is easy; and doesn???t need any addition of co-factors: VVD works with Flavin adenine dinucleotide (FAD) which is already abundant in eukaryote and prokaryote cells (M??ller & Weber, 2013; Nihongaki, Suzuki, Kawano, & Sato, 2014).
false
false
_2033_
22805
22805
9
false
We found illegal sites (PstI) into VVD sequence, those one have been removed.
false
Johanna Chesnel
annotation2470046
1
VVD
range2470046
1
1
450
BBa_B0015
1
BBa_B0015
double terminator (B0010-B0012)
2003-07-16T11:00:00Z
2015-08-31T04:07:20Z
Released HQ 2013
Double terminator consisting of BBa_B0010 and BBa_B0012
false
true
_1_
0
24
7
In stock
false
true
Reshma Shetty
component1916612
1
BBa_B0012
component1916610
1
BBa_B0010
annotation1916612
1
BBa_B0012
range1916612
1
89
129
annotation1916610
1
BBa_B0010
range1916610
1
1
80
BBa_K1616021_sequence
1
cacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagcgtccggcgtgcaaaatcccgaacgacctgaaacagaaagtcatgaaccacgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaa
BBa_J61100_sequence
1
aaagaggggaca
BBa_K1616020_sequence
1
cacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagagatccatcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggccttcaatgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggcctag
BBa_I712074_sequence
1
taatacgactcactatagggaatacaagctacttgttctttttgca
BBa_K1616016_sequence
1
gacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaa
BBa_B0010_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc
BBa_K1616001_sequence
1
taatacgactcactatagggaatacaagctacttgttctttttgcatactagagaaagaggggacatactagagcacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagcgtccggcgtgcaaaatcccgaacgacctgaaacagaaagtcatgaaccacgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaa
BBa_K1616017_sequence
1
atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggccttcaatgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggcctag
BBa_K1616014_sequence
1
cacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagag
BBa_K1616015_sequence
1
cgtccggcgtgcaaaatcccgaacgacctgaaacagaaagtcatgaaccac
BBa_K1616002_sequence
1
aaagaggggacatactagagcacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagagatccatcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggccttcaatgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggcctagtactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_K1616024_sequence
1
taatacgactcactatagggaatacaagctacttgttctttttgcatactagagaaagaggggacatactagagcacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagcgtccggcgtgcaaaatcccgaacgacctgaaacagaaagtcatgaaccacgacaagcagaagaacggcatcaaggtgaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagctaccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaatactagagaaagaggggacatactagagcacaccctgtatgcccctggcggctacgacatcatgggctacctgatccagatcatgaagcggcccaacccccaggtggaactgggccctgtggatacctctgtggccctgatcctgtgcgacctgaagcagaaagacacccccatcgtgtacgcctccgaggccttcctgtacatgaccggctactccaacgccgaggtgctgggccggaactgtagattcctccagtcccctgacggcatggtcaagcctaagtccacccggaaatacgtggactctaacaccatcaacaccatgcggaaggccatcgaccggaacgctgaggtgcaggtggaagtcgtgaacttcaagaagaacggccagcgcttcgtgaatttcctgaccatgatccccgtgcgggacgagacaggcgagtacagatactccatgggcttccagtgcgagacagagagatccatcgccaccatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtaaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccttcggctacggccttcaatgcttcgcccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacaacagccacaacgtctatatcatggcctagtactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_K1616018_sequence
1
agatccatcgccacc
BBa_B0012_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_B0015_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
Chris J. Myers
James Alastair McLaughlin
2017-03-06T15:00:00.000Z