BBa_K143014 1 Pxyl Promoter Xyl for B.subtilis 2008-09-14T11:00:00Z 2015-05-08T01:10:23Z The part was designed using the sequence from the ''B.subtilis'' genome and from previously published papers <cite>1</cite><cite>2</cite>. This sequence was then synthesised by Geneart. Promoter Xylose is an inducible promoter that has been designed for high expression in ''B.subtilis''. Gene expression under the promoter xylose can be induced by addition of xylose. The context with which we used the promoter xylose, was to take an input of xylose and give '''Polymerase Per Second'''(PoPS) as an output.<br> Promoter xylose is an inducible promoter that has been designed for high expression in ''B.subtilis''. Gene expression under the promoter xylose can be induced by addition of xylose. The context with which we used the promoter xylose, was to take an input of xylose and give '''Polymerase Per Second'''(PoPS) as an output. Xylose does not induce the promoter xylose directly, but requires the transcriptional regulator '''XylR''', (<bbpart>BBa_K143036</bbpart>) This means that XylR must be constitutively expressed in ''B.subtilis'' in order to use the promoter xylose. false false _199_ 0 2090 9 Not in stock false Biobrick standard was applied to the promoter xylose sequence. false James Chappell annotation1976428 1 Sigma A -35 range1976428 1 13 18 annotation1975868 1 XylR Operator range1975868 1 51 61 annotation1976429 1 Sigma A -10 range1976429 1 36 41 annotation1975869 1 XylR Operator range1975869 1 65 75 BBa_K143036 1 XylR Xylose operon regulatory protein 2008-09-15T11:00:00Z 2015-05-08T01:10:24Z The XylR protein was PCR cloned form the ''B. subtilis'' genome using Pfu DNA polymerase Transcription is regulated by proteins which bind operator sequences around the transcription start site. These proteins can positively affect transcription (activators) or negatively affect transcription (reppresors). Some repressor proteins can be inactivted however by addition of an inducer, such as xylose. XylR if the regulator protein for the Xylose operon in ''B. subtilis''<cite>#1</cite> and is responsible for ensuring that in the absence of xylose the xylose metabolism proteins are not expressed. Though endogenous to ''B. subtilis'', to minimise the leakage of a xylose inducible promoter XylR should be over-expressed. In the presence of xylose, the XylR tetramer is unable to bind DNA and so transcription resumes. It must be noted that in all ''B. subtilis'' strains that do not have the Xylose operon knocked out '''the xylose inducer will gradually be metabolised by the host''' XylR was used in conjunction with the '''Xylose operon promoter''' (<bbpart>BBa_K143014<bbpart>) and acted as an input adaptor for a '''Polymerases per second''' (POPS) output false true _199_ 0 3475 9 It's complicated false The XylR protein was identified in the genome using its Genbank entry<cite>#2</cite> and NCBI's sequence viewer and PCR primers designed from the sequence. Biobrick prefix and suffix sequences were added and the gene cloned by PCR with Pfu DNA polymerase false Chris Hirst annotation1992712 1 stop range1992712 1 1051 1053 annotation1975975 1 Xylose operon regulatory protein range1975975 1 1 1050 annotation1992713 1 stop range1992713 1 1054 1056 annotation1992711 1 start range1992711 1 1 3 BBa_E0040 1 GFP green fluorescent protein derived from jellyfish Aequeora victoria wild-type GFP (SwissProt: P42212 2004-09-29T11:00:00Z 2016-01-26T02:09:38Z Released HQ 2013 GFP (mut3b) [note that this part does not have a barcode] false true _11_1_ 4206 61 7 In stock false true jcbraff annotation1934520 1 GFP protein range1934520 1 1 720 BBa_K143033 1 LacI LacI (Lva<sup>-</sup>, N-terminal deletion) regulatory protein 2008-09-15T11:00:00Z 2015-05-08T01:10:24Z The LacI gene was cloned from''B. subtilis'' shuttle vector pDR111 using Pfu DNA polymerase PCR LacI is a regulatory protein responsible for the repression of many catabolite genes. Transcription is regulated by proteins which bind operator sequences around the transcription start site. These proteins can positively affect transcription (activators) or negatively affect transcription (reppresors). Some repressor proteins can be inactivted however by addition of an inducer, such as IPTG or certain sugars. LacI if the regulator protein for the lactose operon in ''E.coli'' and the hyper-spank protein of ''B. subtilis''<cite>#1</cite>(<bbpart>BBaK143015</bbpart>) and is responsible for ensuring that in the absence of lactose (or IPTG) that there is no expression trough these promoter. LacI is not endogenous to ''B. subtilis'', so LacI will need to be expressed in the host in order for the hyper-spank promoter to be regulated. In the presence of IPTG or lactose, the LacI tetramer is unable to bind DNA and so transcription resumes. This version of LacI lacks a Lva degradation tag and has a small(3 amino acid) N-terminal deletion relative to the current registry LacI (<bbpart>BBa_C0012</bbpart)> and is derivatives. The N-terminal deletion appears to be common to most of the LacI genes used in conjunction with ''B. subtilis'' though both forms are found in ''E.coli'' (in differing strains). LacI was used in conjunction with the '''Hyper-spank promoter''' (<bbpart>BBa_K143015<bbpart>) and acted as an input adaptor for a '''Polymerases per second''' (POPS) output ====References==== <biblio> #1 pmid=16166525 </biblio> false false _199_ 0 3475 9 It's complicated false LacI was located in the sequence of the ''B. subtilis'' shuttle vector pDR111. This version of LacI lacks a Ltva degradation sequence and has a small N-terminal deletion that is observed in many LacI used in studies on ''B.subtilis''. In particular, this LacI protein is used in pDR111 to regulate expression of the inducible Phyper-spank protein (<bbpart>BBa_K143015</bbpart>) (also used in the pDR111 vector). The BioBrick prefix and suffix were applied to the gene false Chris Hirst annotation1994271 1 stop range1994271 1 1081 1083 annotation1994272 1 stop range1994272 1 1084 1086 annotation1975974 1 LacI (Lva-, N-terminal deletion) regulatory protein range1975974 1 1 1080 annotation1992702 1 start range1992702 1 1 3 BBa_E1010 1 mRFP1 **highly** engineered mutant of red fluorescent protein from Discosoma striata (coral) 2004-07-27T11:00:00Z 2015-08-31T04:07:26Z Campbell et al., PNAS v99 p7877 <a href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12060735">URL</a> Released HQ 2013 monomeric RFP: Red Fluorescent Protein. Excitation peak: 584 nm Emission peak: 607 nm false false _11_1_ 0 52 7 In stock false TAATAA double stop codon added (DE). Four silent mutations made to remove three EcoRI sites and one PstI site: A28G, A76G, A349G, G337A. true Drew Endy annotation1014044 1 mrfp1 range1014044 1 1 675 annotation2214014 1 Help:Barcodes range2214014 1 682 706 BBa_B0015 1 BBa_B0015 double terminator (B0010-B0012) 2003-07-16T11:00:00Z 2015-08-31T04:07:20Z Released HQ 2013 Double terminator consisting of BBa_B0010 and BBa_B0012 false true _1_ 0 24 7 In stock false true Reshma Shetty component1916610 1 BBa_B0010 component1916612 1 BBa_B0012 annotation1916610 1 BBa_B0010 range1916610 1 1 80 annotation1916612 1 BBa_B0012 range1916612 1 89 129 BBa_B0012 1 BBa_B0012 TE from coliphageT7 2003-01-31T12:00:00Z 2015-08-31T04:07:20Z Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>. Released HQ 2013 Transcription terminator for the <i>E.coli</i> RNA polymerase. false false _1_ 0 24 7 In stock false <P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator. false Reshma Shetty annotation1686 1 T7 TE range1686 1 8 27 annotation1687 1 stop range1687 1 34 34 annotation1690 1 polya range1690 1 28 41 annotation7020 1 BBa_B0012 range7020 1 1 41 BBa_K143021 1 RBS-spoVG SpoVG ribosome binding site (RBS) for B. subtilis 2008-09-16T11:00:00Z 2015-05-08T01:10:23Z The sequence was taken from a previous research paper [1] and was constructed by Geneart. Released HQ 2013 Description: SpoVG is an endogenous ribosome binding site from B.subtilis. The sequence of the spoVG ribosome binding site is AAAGGUGGUGA which is complementary to the sequence UUUCCUCCACU from the 3' region of the 16s rRNA from B.subtilis. Previous research showed that the predicted binding energy of the 16s rRNA to the RBS is -19kcal <cite>1</cite> false true _199_ 0 2090 9 In stock false In order to ensure that the RBS is functional the actual ribosome binding site was maintained and the distance between the RBS and the start codon maintained. In order to conform to the biobrick standard the sequence flanking the RBS had to be changed but the distance between the promoter and RBS, and start codon and RBS was maintained. false James Chappell annotation1975997 1 rbs range1975997 1 1 12 BBa_B0010 1 BBa_B0010 T1 from E. coli rrnB 2003-11-19T12:00:00Z 2015-08-31T04:07:20Z Transcriptional terminator consisting of a 64 bp stem-loop. false false _1_ 0 24 7 In stock false true Randy Rettberg annotation4184 1 stem_loop range4184 1 12 55 annotation7018 1 BBa_B0010 range7018 1 1 80 BBa_K1697002 1 BBa_K1697002 Toggle switch for gram positive 2015-09-16T11:00:00Z 2015-09-18T09:43:24Z DNA synthesis this part was designed with gram positive bacteria in mind. However, we are unable to characterize it in gram positive organism in E. coli false false _2115_ 24798 24798 9 true We have to find a promoter that can be reversibly activated by a protein false UI Indonesia 2015 component2475137 1 BBa_K143036 component2475118 1 BBa_E0040 component2475139 1 BBa_K143021 component2475125 1 BBa_B0015 component2475109 1 BBa_K143021 component2475107 1 BBa_K143014 component2475114 1 BBa_K143033 component2475116 1 BBa_K143021 component2475142 1 BBa_E1010 component2475130 1 BBa_K143015 component2475132 1 BBa_K143021 annotation2475137 1 BBa_K143036 range2475137 1 2155 3210 annotation2475114 1 BBa_K143033 range2475114 1 95 1180 annotation2475109 1 BBa_K143021 range2475109 1 83 94 annotation2475116 1 BBa_K143021 range2475116 1 1181 1192 annotation2475139 1 BBa_K143021 range2475139 1 3211 3222 annotation2475118 1 BBa_E0040 range2475118 1 1193 1912 annotation2475130 1 BBa_K143015 range2475130 1 2042 2142 annotation2475125 1 BBa_B0015 range2475125 1 1913 2041 annotation2475107 1 BBa_K143014 range2475107 1 1 82 annotation2475142 1 BBa_E1010 range2475142 1 3223 3928 annotation2475132 1 BBa_K143021 range2475132 1 2143 2154 BBa_K143015 1 Ph-s Promoter hyper-spank for B. subtilis 2008-09-17T11:00:00Z 2015-05-08T01:10:23Z The part was designed using the sequence from the ''B.subtilis'' genome and from previously published papers <cite>1</cite><cite>2</cite><cite>3</cite>. This sequence was then synthesised by Geneart. Promoter hyper-spank is an inducible promoter that has been designed for high expression in ''B.subtilis''. Gene expression under the promoter hyper-spank can be induced by addition of Isopropyl &#946;-D-1-thiogalactopyranoside (IPTG). The context with which we used the promoter hyper-spank, was to take an input of IPTG and give '''Polymerase Per Second'''(PoPS) as an output. IPTG does not induce the promoter hyper-spank directly, but requires the transcriptional regulator '''LacI''', (<bbpart>BBa_K413035</bbpart>). This means that LacI must be constitutively expressed in ''B.subtilis'' in order to use the promoter hyper-spank. false false _199_ 0 3475 9 Not in stock false Biobrick standard was applied to the promoter hyper-spank sequence. false Chris Hirst annotation1976423 1 LacI Operator range1976423 1 10 30 annotation1976425 1 Sigma A -10 range1976425 1 69 74 annotation1976424 1 Sigma A -35 range1976424 1 46 50 annotation1976426 1 LacI Operator range1976426 1 81 101 BBa_K1697002_sequence 1 ctaaaaaaaatattgaaaatactgacgaggttatataagatgaaaataagttagtttgtttaaacaacaaactaataggtgaaaaggtggtgaaatgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaaacggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtaataaaaaggtggtgaaatgcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataataaccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatactcgagggtaaatgtgagcactcacaattcattttgcaaaagttgttgactttatctacaaggtgtggcataatgtgtgtaattgtgagcggataacaattaaaggtggtgaaatgactggattaaataaatcaactgtctcatcacaggtaaacacgttaatgaaagaaagtatggtatttgaaataggtcaaggacaatcaagtggcggaagaagacctgtcatgcttgtttttaataaaaaggcaggatactccgttggaatagatgttggtgtggattatattaatggcattttaacagaccttgaaggaacaatcgttcttgatcaataccgccatttggaatccaattctccagaaataacgaaagacattttgattgatatgattcatcactttattacgcaaatgccccaatctccgtacgggtttattggtataggtatttgcgtgcctggactcattgataaagatcaaaaaattgttttcactccgaactccaactggagagatattgacttaaaatcttcgatacaagagaagtacaatgtgtctgtttttattgaaaatgaggcaaatgctggcgcatatggagaaaaactatttggagctgcaaaaaatcacgataacattatttacgtaagtatcagcacaggaatagggatcggtgttattatcaacaatcatttatatagaggagtaagcggcttctctggagaaatgggacatatgacaatagactttaatggtcctaaatgcagttgcggaaaccgaggatgctgggaattgtatgcttcagagaaggctttattaaaatctcttcagaccaaagagaaaaaactgtcctatcaagatatcataaacctcgcccatctgaatgatatcggaaccttaaatgcattacaaaattttggattctatttaggaataggccttaccaatattctaaatactttcaacccacaagccgtaattttaagaaatagcataattgaatcgcatcctatggttttaaattcaatgagaagtgaagtatcatcaagggtttattcccaattaggcaatagctatgaattattgccatcttccttaggacagaatgcaccggcattaggaatgtcctccattgtgattgatcattttctggacatgattacaatgtaataaaaaggtggtgaaatggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc BBa_B0010_sequence 1 ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc BBa_K143033_sequence 1 atgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaaacggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtaataa BBa_K143014_sequence 1 ctaaaaaaaatattgaaaatactgacgaggttatataagatgaaaataagttagtttgtttaaacaacaaactaataggtga BBa_K143021_sequence 1 aaaggtggtgaa BBa_K143015_sequence 1 ctcgagggtaaatgtgagcactcacaattcattttgcaaaagttgttgactttatctacaaggtgtggcataatgtgtgtaattgtgagcggataacaatt BBa_E1010_sequence 1 atggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc BBa_K143036_sequence 1 atgactggattaaataaatcaactgtctcatcacaggtaaacacgttaatgaaagaaagtatggtatttgaaataggtcaaggacaatcaagtggcggaagaagacctgtcatgcttgtttttaataaaaaggcaggatactccgttggaatagatgttggtgtggattatattaatggcattttaacagaccttgaaggaacaatcgttcttgatcaataccgccatttggaatccaattctccagaaataacgaaagacattttgattgatatgattcatcactttattacgcaaatgccccaatctccgtacgggtttattggtataggtatttgcgtgcctggactcattgataaagatcaaaaaattgttttcactccgaactccaactggagagatattgacttaaaatcttcgatacaagagaagtacaatgtgtctgtttttattgaaaatgaggcaaatgctggcgcatatggagaaaaactatttggagctgcaaaaaatcacgataacattatttacgtaagtatcagcacaggaatagggatcggtgttattatcaacaatcatttatatagaggagtaagcggcttctctggagaaatgggacatatgacaatagactttaatggtcctaaatgcagttgcggaaaccgaggatgctgggaattgtatgcttcagagaaggctttattaaaatctcttcagaccaaagagaaaaaactgtcctatcaagatatcataaacctcgcccatctgaatgatatcggaaccttaaatgcattacaaaattttggattctatttaggaataggccttaccaatattctaaatactttcaacccacaagccgtaattttaagaaatagcataattgaatcgcatcctatggttttaaattcaatgagaagtgaagtatcatcaagggtttattcccaattaggcaatagctatgaattattgccatcttccttaggacagaatgcaccggcattaggaatgtcctccattgtgattgatcattttctggacatgattacaatgtaataa BBa_E0040_sequence 1 atgcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataataa BBa_B0012_sequence 1 tcacactggctcaccttcgggtgggcctttctgcgtttata BBa_B0015_sequence 1 ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata igem2sbol 1 iGEM to SBOL conversion Conversion of the iGEM parts registry to SBOL2.1 James Alastair McLaughlin Chris J. Myers 2017-03-06T15:00:00.000Z