BBa_B0012
1
BBa_B0012
TE from coliphageT7
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>.
Released HQ 2013
Transcription terminator for the <i>E.coli</i> RNA polymerase.
false
false
_1_
0
24
7
In stock
false
<P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator.
false
Reshma Shetty
annotation1690
1
polya
range1690
1
28
41
annotation7020
1
BBa_B0012
range7020
1
1
41
annotation1686
1
T7 TE
range1686
1
8
27
annotation1687
1
stop
range1687
1
34
34
BBa_K218003
1
BBa_K218003
LuxOU from Vibrio harveyi followed by terminator
2009-10-18T11:00:00Z
2015-05-08T01:11:30Z
blah
blah
false
true
_321_
0
4333
9
It's complicated
false
blah
false
Jeremy Kubik
component2053649
1
BBa_K218001
component2053650
1
BBa_B0010
component2053652
1
BBa_B0012
annotation2053650
1
BBa_B0010
range2053650
1
1954
2033
annotation2053652
1
BBa_B0012
range2053652
1
2042
2082
annotation2053649
1
BBa_K218001
range2053649
1
1
1945
BBa_K218001
1
BBa_K218001
LuxOU from Vibrio harveyi
2009-10-16T11:00:00Z
2015-05-08T01:11:30Z
GenBank Accession# L26221 LuxO Protein ID# AAD12736.1 LuxU Protein ID# AAD12737.2
Jeremy A. Freeman and Bonnie L. Bassler. Sequence and function of LuxU: a two-component phosphorelay protein that regulates quorum sensing in Vibrio harveyi. 1999. Journal of Bacteriology. Feb 1999, p. 899-906.
Vibrio harveyi luminescence regulatory protein LuxO (GenBank accession# P0C5S5) and phosphorelay protein LuxU (GenBank accession# AAD12737).
Quorum-sensing bacteria produce and release chemical signal molecules termed autoinducers (AIs) whose external concentration increases as a function of increasing cell-population density. Bacteria detect the accumulation of a minimal threshold stimulatory concentration of these autoinducers and alter gene expression, and therefore their behavior. Using these signal-response systems, bacteria synchronize particular behaviors on a population-wide scale and thus function as multicellular organisms. The bioluminescent marine bacterium Vibrio harveyi uses three different AIs???AHL, CAI-1, and AI-2???to control the expression of genes responsible for bioluminescence and numerous other traits. We have designed our System 2 based on V. harveyi AI-2 signaling. V. harveyi AI-2 signal is a furanosyl borate diester, production of which requires the LuxS enzyme. Biosynthesis of AI-2 is dependent on the usage of S-adenosylmethionine (SAM) by the cell in various methylation reactions. For this reason, during periods of exponential growth, there is a very large production of AI-2, thus perhaps signaling to neighbors that a suitable environment for growth (i.e. rich in nutrients) has been found. LuxS catalyzes the formation of the (S)-4,5-dihydroxy-2,3-pentanedione (DPD) intermediate which spontaneously cyclizes and reacts with borate to give AI-2. AI-2 is bound in the periplasm by the protein LuxP, which is constitutively bound to LuxQ, a membrane bound histidine kinase sensor. The binding of AI-2 to LuxP is necessary in regulating the activity of the periplasm-bound LuxQ. At low cell density, in the absence of significant amounts of autoinducers, LuxQ acts as a kinase, autophosphorylates, and subsequently transfers the phosphate to the cytoplasmic protein LuxU. LuxU passes the phosphate to the DNA-binding response regulator protein LuxO. Phospho-LuxO, in conjunction with a transcription factor termed σ54, involved in nitrogen metabolism, activates transcription of the genes encoding five regulatory small RNAs (sRNAs) termed Qrr1???5 (for Quorum Regulatory RNA). The Qrr sRNAs interact with an RNA chaperone termed Hfq, involved in mRNA splicing. The sRNAs, together with Hfq, bind to and destabilize the mRNA encoding the transcriptional activator termed LuxR. LuxR is required to activate transcription of the luciferase operon: luxCDABE. Thus, at low cell density, because the luxR mRNA is degraded, the bacteria do not express the genes necessary for bioluminescence. At high cell density, when the autoinducers accumulate to the level required for detection, the kinase activity of LuxQ is overtaken by its phosphatase activity and thus drains phosphate from LuxO via LuxU. Unphosphorylated LuxO cannot induce expression of the sRNAs. This allows translation of luxR mRNA, production of LuxR, resulting in bioluminescence.
Reference: Waters C.M. and Bassler B.L. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol. 2005;21:319-46.
false
false
_321_
0
4333
9
It's complicated
false
This part was submitted to the Registry in 2008 (K131016); however, this part was cloned again and sequenced and is being re-submitted.
LuxO and LuxU are found within the operon, therefore we have decided to keep these genes together. The internal RBS was also kept.
false
Jeremy Kubik
annotation2048771
1
Stop for LuxO
range2048771
1
1390
1392
annotation2048769
1
RBS
range2048769
1
5
12
annotation2048774
1
Start of LuxU
range2048774
1
1389
1391
annotation2048770
1
Start of LuxO
range2048770
1
31
33
annotation2048776
1
LuxU
range2048776
1
1389
1733
annotation2048775
1
Stop for LuxU
range2048775
1
1731
1733
annotation2048773
1
LuxO
range2048773
1
31
1392
BBa_B0010
1
BBa_B0010
T1 from E. coli rrnB
2003-11-19T12:00:00Z
2015-08-31T04:07:20Z
Transcriptional terminator consisting of a 64 bp stem-loop.
false
false
_1_
0
24
7
In stock
false
true
Randy Rettberg
annotation4184
1
stem_loop
range4184
1
12
55
annotation7018
1
BBa_B0010
range7018
1
1
80
BBa_B0010_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc
BBa_K218003_sequence
1
acagaaggtcaaaagtctcgttatctacttatggtagaagacaccgcatccgttgcggcactttaccgctcttacctcacgccacttggcatcgatatcaatattgttggaacaggcagagacgccattgaaagcctgaaccatcgcattcctgatcttattctgctcgatcttcgtctacctgatatgacggggatggacgtattgcacgcggtgaagaaaagccacccagacgtgccaatcatcttcatgacagcccatggttctatcgatactgcggtagaggcgatgcgccacggttctcaagacttcctaatcaaaccatgtgaagcagaccgtttacgtgtcacggtgaacaatgcgatccgtaaagcaaccaaattaaagaatgaagctgacaaccccggtaaccaaaattaccaaggcttcatcggcagtagccaaacgatgcagcaggtttaccgcaccattgactcggcagcgagcagtaaagcgagtattttcatcacgggtgaaagtggtacgggtaaagaagtgtgtgccgaagcgattcacgcagcaagcaaacgcggtgataagccgtttatcgccatcaactgtgcggcaatcccgaaagaccttattgaaagtgagctgtttggtcacgtaaaaggtgcgtttactggtgctgcgaatgaccgacaaggtgcggcagagcttgctgatggcggcaccttgttccttgatgaactctgtgaaatggacttggatcttcaaactaagctattgcgctttatccaaacgggtacattccaaaaagtcggttcttctaaaatgaagagcgtggatgtgcgctttgtgtgtgcaactaaccgagacccttggaaagaagtgcaagaaggccgtttccgtgaagacttgtattaccgtttgtacgtgattcctttgcaccttccgccgctgcgtgagcgtggtaaagacgttattgaaattgcatactcgttgcttggttatatgtctcatgaggaaggtaagagtttcgtccgtttcgcacaagacgtgattgaaagattcaacagctacgaatggccgggtaacgttcgccagttgcaaaacgtattgcgtaatatcgtggtactgaacaatggcaaagagatcacgctggatatgttaccgccaccactgaatcagcctgttgtgcgccaatcggtagcaaaattcattgaacctgacattatgacggtgtcagatattatgccgctttggatgacagagaaaatggctattgagcaggcaattcaagcgtgtgaaggcaacattccacgcgctgctggctatttggatgttagtccatcaacgatttatcgcaagttgcaagcttggaatagcaaggacgaaaaacaaaacgtatgaatacggacgtattaaatcagcaaaaaattgaagaactgtctgcggaaattggtagcgataatgttcctgttttgcttgatatttttcttggggaaatggactcctacattggcactttaactgaacttcagggctcagagcagctgttgtatttaaaagagatcagccacgcactgaaaagtagtgctgccagctttggcgcagatcgattgtgtgaacgagcgattgccatcgacaagaaagcaaaagcgaatcaattgcaagagcaggggatggagacgagcgaaatgctcgctttacttcatatcactcgtgacgcctaccgttcttggacaaactaacgtttcgagcaagacattaagcgcaacgtaaaaacacaaagcccttccggtgtggaagggcttttttgtttggggagtttgctccgaatcgaagccgctttctcaatgcttttcgtctagttagacagtaagcgctccataaaacccgcattctaatcgcctagcgcgaagaataagatcaagtctccaaccatgaggagatttgaaatgggtactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_B0012_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_K218001_sequence
1
acagaaggtcaaaagtctcgttatctacttatggtagaagacaccgcatccgttgcggcactttaccgctcttacctcacgccacttggcatcgatatcaatattgttggaacaggcagagacgccattgaaagcctgaaccatcgcattcctgatcttattctgctcgatcttcgtctacctgatatgacggggatggacgtattgcacgcggtgaagaaaagccacccagacgtgccaatcatcttcatgacagcccatggttctatcgatactgcggtagaggcgatgcgccacggttctcaagacttcctaatcaaaccatgtgaagcagaccgtttacgtgtcacggtgaacaatgcgatccgtaaagcaaccaaattaaagaatgaagctgacaaccccggtaaccaaaattaccaaggcttcatcggcagtagccaaacgatgcagcaggtttaccgcaccattgactcggcagcgagcagtaaagcgagtattttcatcacgggtgaaagtggtacgggtaaagaagtgtgtgccgaagcgattcacgcagcaagcaaacgcggtgataagccgtttatcgccatcaactgtgcggcaatcccgaaagaccttattgaaagtgagctgtttggtcacgtaaaaggtgcgtttactggtgctgcgaatgaccgacaaggtgcggcagagcttgctgatggcggcaccttgttccttgatgaactctgtgaaatggacttggatcttcaaactaagctattgcgctttatccaaacgggtacattccaaaaagtcggttcttctaaaatgaagagcgtggatgtgcgctttgtgtgtgcaactaaccgagacccttggaaagaagtgcaagaaggccgtttccgtgaagacttgtattaccgtttgtacgtgattcctttgcaccttccgccgctgcgtgagcgtggtaaagacgttattgaaattgcatactcgttgcttggttatatgtctcatgaggaaggtaagagtttcgtccgtttcgcacaagacgtgattgaaagattcaacagctacgaatggccgggtaacgttcgccagttgcaaaacgtattgcgtaatatcgtggtactgaacaatggcaaagagatcacgctggatatgttaccgccaccactgaatcagcctgttgtgcgccaatcggtagcaaaattcattgaacctgacattatgacggtgtcagatattatgccgctttggatgacagagaaaatggctattgagcaggcaattcaagcgtgtgaaggcaacattccacgcgctgctggctatttggatgttagtccatcaacgatttatcgcaagttgcaagcttggaatagcaaggacgaaaaacaaaacgtatgaatacggacgtattaaatcagcaaaaaattgaagaactgtctgcggaaattggtagcgataatgttcctgttttgcttgatatttttcttggggaaatggactcctacattggcactttaactgaacttcagggctcagagcagctgttgtatttaaaagagatcagccacgcactgaaaagtagtgctgccagctttggcgcagatcgattgtgtgaacgagcgattgccatcgacaagaaagcaaaagcgaatcaattgcaagagcaggggatggagacgagcgaaatgctcgctttacttcatatcactcgtgacgcctaccgttcttggacaaactaacgtttcgagcaagacattaagcgcaacgtaaaaacacaaagcccttccggtgtggaagggcttttttgtttggggagtttgctccgaatcgaagccgctttctcaatgcttttcgtctagttagacagtaagcgctccataaaacccgcattctaatcgcctagcgcgaagaataagatcaagtctccaaccatgaggagatttgaaatggg
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
Chris J. Myers
James Alastair McLaughlin
2017-03-06T15:00:00.000Z