BBa_K560000
1
BBa_K560000
Blue Light Sensor+PtrpL+mRFP1
2011-09-24T11:00:00Z
2015-05-08T01:12:41Z
LovTAP was assembled by Strickland et al.
LovTAP Photosensor is a chimeric protein, which consists of LOV domain which senses blue light. It fused to the trpR-DNA binding domain of the transcription factor trp repressor.
Under the presence of blue light, maximum at 450nm, the absorption of a photon leads to conformational rearrangements in LovTAP. The LovTAP can then bind to DNA and repress the transcription of genes following the trpL promoter. Here we use RFP as the reporter.
false
false
_728_
0
8553
9
In stock
true
This system had better work in TrpR mutant E.coli strain.
false
Zhang Chao
component2258785
1
BBa_K360121
component2258778
1
BBa_J23117
component2258796
1
BBa_E1010
component2258791
1
BBa_K360023
component2258793
1
BBa_B0034
annotation2258778
1
BBa_J23117
range2258778
1
1
35
annotation2258785
1
BBa_K360121
range2258785
1
44
887
annotation2258796
1
BBa_E1010
range2258796
1
971
1676
annotation2258793
1
BBa_B0034
range2258793
1
953
964
annotation2258791
1
BBa_K360023
range2258791
1
896
944
BBa_E1010
1
mRFP1
**highly** engineered mutant of red fluorescent protein from Discosoma striata (coral)
2004-07-27T11:00:00Z
2015-08-31T04:07:26Z
Campbell et al., PNAS v99 p7877 <a href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12060735">URL</a>
Released HQ 2013
monomeric RFP:
Red Fluorescent Protein.
Excitation peak: 584 nm
Emission peak: 607 nm
false
false
_11_1_
0
52
7
In stock
false
TAATAA double stop codon added (DE).
Four silent mutations made to remove three EcoRI sites and one PstI site: A28G, A76G, A349G, G337A.
true
Drew Endy
annotation1014044
1
mrfp1
range1014044
1
1
675
annotation2214014
1
Help:Barcodes
range2214014
1
682
706
BBa_K360023
1
BBa_K360023
trpL promoter
2010-10-20T11:00:00Z
2015-05-08T01:12:12Z
LovTAP was assembled by Strickland et al.
Reference
Strickland, D., Moffat, K., & Sosnick, T. (2008). Light-activated DNA binding in a designed allosteric protein. Proceedings of the National Academy of Sciences, 105(31), 10709. National Acad Sciences. Retrieved from http://www.pnas.org/content/105/31/10709.full.
Released HQ 2013
LovTAP
This photoreceptor was assembled by Strickland et al., and consists of a LOV (light-oxygen-voltage) domain of Avena sativa phototropin1 (AsLOV2) that senses blue light, fused to the trpR- DNA binding domain of the transcription factor trp repressor. The resulting protein is called LovTAP: LOV- and tryptophan-activated protein.
LOV domains bind a flavin-mononucleotide (FMN) or flavin-adenine-dinucleotide (FAD) cofactor, which are used in a wide variety of metabolic pathways as cofactors in redox reactions and are available in most organisms. The cofactor has a broad absorption spectrum, with a maximum at 450 nm. Besides, the core of the LOV domain is often flanked by amino- or carboxy-terminal helices, termed A???α and Jα, respectively.
In the LovTAP construction, AsLOV2 domain via its carboxyl-terminal Jα ???helix was ligated to an amino-terminal truncation of TrpR. The resulting protein has a domain-domain overlap with a shared helix. Thus, photoexcitation would change the conformation of the protein, in turn changing the stability of the shared-helix-domain contacts.
Under the presence of light, absorption of a photon leads to the formation of a covalent adduct between the flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in the AsLOV2 domain, which results in conformational rearrangements in LovTAP. This change impacts the affinity of the shared helix for the two domains: disrupting the contacts between the shared helix and the LOV domain and enabling the association of the shared helix with the TrpR domain, which establishes DNA-binding affinity and LovTAP can then bind DNA as an homodimer, repressing the transcription of the genes downstream of its binding sites.
In the dark, when the shared helix contacts the LOV domain, the TrpR domain's DNA-binding affinity decreases and LovTAP is in an inactive conformation.
false
true
_485_
0
6618
9
In stock
false
We decided to synthesize a new LovTap part, that in comparison with the Part:BBa_K191006[1] that is already at the registry, has the following differences:
1. The 2 '''PstI restriction sites''' were '''removed''' from the coding region of LovTap.
2. We included a punctual mutation to change the '''ILE427 by a PHE427''', as was proposed by the model results of the team iGEM09_EPF-Lausanne [2]. With this mutation LovTAP should react faster and the conformational change should be more stable (the protein stays in the active form for longer, under light induction).
The reason of the conformational change is the following:
Cys450 side chain is involved in light state in bond formation with the cofactor. Cys450 can assume two conformational states, called here ON and OFF, and corresponding respectively, to the Sg being near or far from FMN[2].
The isoleucine 427 is quite big. But not enough to push the cystein's side chain significantly toward the cofactor. So we choose to replace this ILE427 by an PHE427, an amino acid which is much bigger and have more or less the same propreties than the ILE[2].
5. The stop codon tga was changed for two taa.
1. Registry entry: Part:BBa_K191003
2. Wiki Team: EPF-Laussane. Simulations and results of predicted lovTAP mutations.
3. Wiki Team: EPF-Laussane. LovTAP characterization results.
4. Registry entry: Part:BBa_B0030
5. Registry entry: Part:BBa_B0032
6. Registry entry: Part:BBa_R0010
false
Claudia Ivonne Hernandez Armenta, Jorge Zepeda
annotation2091493
1
trpR binding site -3.5
range2091493
1
29
45
annotation2091497
1
-10
range2091497
1
28
35
annotation2091496
1
-35
range2091496
1
3
11
annotation2091495
1
trpR binding site -19.5
range2091495
1
13
30
annotation2091494
1
trpR binding site -11.5
range2091494
1
21
40
BBa_K360121
1
BBa_K360121
RBS + LovTAP Photosensor + terminator
2010-09-08T11:00:00Z
2015-05-08T01:12:12Z
Chiameric protein assembled by Strickland et al.
Reference:
Strickland, D., Moffat, K., & Sosnick, T. (2008). Light-activated DNA binding in a designed allosteric protein. Proceedings of the National Academy of Sciences, 105(31), 10709. National Acad Sciences. Retrieved from http://www.pnas.org/content/105/31/10709.full.
This photoreceptor was assembled by Strickland et al., and consists of a LOV (light-oxygen-voltage) domain of Avena sativa phototropin1 (AsLOV2) that senses blue light, fused to the trpR- DNA binding domain of the transcription factor trp repressor. The resulting protein is named LovTAP: LOV- and tryptophan-activated protein.
LOV domains bind a flavin-mononucleotide (FMN) or flavin-adenine-dinucleotide (FAD) cofactor, which are used in a wide variety of metabolic pathways as cofactors in redox reactions and are available in most organisms. The cofactor has a broad absorption spectrum, with a maximum at 450 nm. Besides, the core of the LOV domain is often flanked by amino- or carboxy-terminal helices, termed A???α and Jα, respectively
In the LovTAP construction, AsLOV2 domain via its carboxyl-terminal Jα ???helix was ligated to an amino-terminal truncation of TrpR. The resulting protein has a domain-domain overlap with a shared helix. Thus, photoexcitation would change the conformation of the protein, in turn changing the stability of the shared-helix-domain contacts.
Under the presence of light, absorption of a photon leads to the formation of a covalent adduct between the flavin mononucleotide (FMN) cofactor and a conserved cysteine residue in the AsLOV2 domain, which results in conformational rearrangements in LovTAP. This change impacts the affinity of the shared helix for the two domains: disrupting the contacts between the shared helix and the LOV domain and enabling the association of the shared helix with the TrpR domain, which establishes DNA-binding affinity and LovTAP can then bind DNA as an homodimer, repressing the transcription of the genes downstream of its binding sites.
In the dark, when the shared helix contacts the LOV domain, the TrpR domain's DNA-binding affinity decreases and LovTAP is in an inactive conformation.
false
false
_485_
0
6618
9
It's complicated
true
We decided to synthesize a new LovTAP part, that in comparison with the Part:BBa_K191003 that is already at the registry, has the following differences:
1. The 2 PstI restriction sites were removed from the coding region of LovTap.
2. We included a punctual mutation to change the ILE427 by a PHE427, as was proposed by the model results of the team iGEM09_EPF-Lausanne. With this mutation LovTAP should react faster and the conformational change should be more stable (the protein stays in the active form for longer, under light induction).
3. The part does not include a promoter. We eliminated the inverting regulator sensitive to LacI and CAP protein(Part:BBa_R0010). According to the report of EPF-Laussane team, the expression levels of LovTAP under the inverting regulator, doesn??t seem to show differences to the induction with IPTG. Thus, we decided to remove it and as we know that the level expression of LovTAP must be low (because at high levels of expresion, there is unspecific regulation under darkness and light states), we plan to test weak promoters to choose the best option and include it in the construction.
4. The RBS was changed from a strong (Part: BBa_B0030) to a medium strength (Part:BBa_B0032), thus expecting lower levels of lovTAP protein.
5. The stop codon tga was changed for two taa.
false
Claudia Ivonne Hernandez Armenta
annotation2091646
1
RBS B0032
range2091646
1
1
13
annotation2091650
1
Terminator B0012
range2091650
1
804
830
annotation2091648
1
LovTAP K360022
range2091648
1
18
701
annotation2091649
1
Terminator B0010
range2091649
1
725
771
annotation2091647
1
stop codon
range2091647
1
702
706
annotation2091651
1
AAA
range2091651
1
831
844
BBa_J23117
1
BBa_J23117
constitutive promoter family member
2006-08-16T11:00:00Z
2015-08-31T04:08:40Z
Later
Released HQ 2013
Later
false
true
_52_
0
483
95
In stock
true
N/A
true
John Anderson
BBa_B0034
1
BBa_B0034
RBS (Elowitz 1999) -- defines RBS efficiency
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Released HQ 2013
RBS based on Elowitz repressilator.
false
true
_1_
0
24
7
In stock
false
Varies from -6 to +1 region from original sequence to accomodate BioBricks suffix. <p>No secondary structures are formed in the given RBS region. Users should check for secondary structures induced in the RBS by upstream and downstream elements in the +50 to -50 region, as such structures will greatly affect the strength of the RBS.
Contact info for this part: <a href="mailto:(bchow@media.mit.edu)">Brian Chow</a>
true
Vinay S Mahajan, Voichita D. Marinescu, Brian Chow, Alexander D Wissner-Gross and Peter Carr IAP, 2003.
annotation23325
1
conserved
range23325
1
5
8
BBa_K360023_sequence
1
gctgttgacaattaatcatcgaactagttaactagtacgcaagttcacg
BBa_B0034_sequence
1
aaagaggagaaa
BBa_J23117_sequence
1
ttgacagctagctcagtcctagggattgtgctagc
BBa_E1010_sequence
1
atggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc
BBa_K360121_sequence
1
tcacacaggaaagtactatgttggctactacacttgaacgtattgagaagaactttgtcattactgacccaaggttgccagataatccctttatattcgcgtccgatagtttcttgcagttgacagaatatagccgtgaagaaattttgggaagaaattgtcgttttctacaaggtcctgaaactgatcgcgcgacagtgagaaaaattagagatgccatagataaccaaacagaggtcactgttcagctgattaattatacaaagagtggtaaaaagttctggaacctctttcacttgcagcctatgcgagatcagaagggagatgtccagtactttattggggttcagttggatggaactgagcatgtccgagatgctgccgagagagagggagtcatgctgattaagaaaaccgccgaaaatattgatgaggcggcatttgtcgacctgcttaagaatgcctaccaaaacgatctccatttaccgttgttaaacctgatgctgacgccagatgagcgcgaagcgttggggactcgcgtgcgtattgtcgaagagctgttgcgcggcgaaatgagccagcgtgagttaaaaaatgaactcggcgcgggcatcgcgacgattacgcgtggatctaacagcctgaaagccgcgcccgtggagctgcgccagtggctggaagaggtgttgctgaaaagcgattaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_K560000_sequence
1
ttgacagctagctcagtcctagggattgtgctagctactagagtcacacaggaaagtactatgttggctactacacttgaacgtattgagaagaactttgtcattactgacccaaggttgccagataatccctttatattcgcgtccgatagtttcttgcagttgacagaatatagccgtgaagaaattttgggaagaaattgtcgttttctacaaggtcctgaaactgatcgcgcgacagtgagaaaaattagagatgccatagataaccaaacagaggtcactgttcagctgattaattatacaaagagtggtaaaaagttctggaacctctttcacttgcagcctatgcgagatcagaagggagatgtccagtactttattggggttcagttggatggaactgagcatgtccgagatgctgccgagagagagggagtcatgctgattaagaaaaccgccgaaaatattgatgaggcggcatttgtcgacctgcttaagaatgcctaccaaaacgatctccatttaccgttgttaaacctgatgctgacgccagatgagcgcgaagcgttggggactcgcgtgcgtattgtcgaagagctgttgcgcggcgaaatgagccagcgtgagttaaaaaatgaactcggcgcgggcatcgcgacgattacgcgtggatctaacagcctgaaagccgcgcccgtggagctgcgccagtggctggaagaggtgttgctgaaaagcgattaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatactagaggctgttgacaattaatcatcgaactagttaactagtacgcaagttcacgtactagagaaagaggagaaatactagatggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
James Alastair McLaughlin
Chris J. Myers
2017-03-06T15:00:00.000Z