BBa_K143055
1
Ph-s-spoVG
Promoter hyper-spank and RBS spoVG for B. subtilis
2008-10-07T11:00:00Z
2015-05-08T01:10:24Z
Phyperspank-spoVG was synthesised by GeneArt
Inducible promoter hyper-spank(<bbpart>BBa_K143015</bbpart>) coupled to the strong Ribosome Binding Site spoVG(<bbpart>BBa_K143021</bbpart>) from ''B. subtilis''.
Phyperspank-spoVG can be used to take an input of IPTG and give a '''Ribosomes per second''' (RiPS) output generator.
IPTG does not directly induce the expression of the promoter hyper-spank, but requires the transcriptional regulator '''LacI''', (<bbpart>BBa_K143033</bbpart>). This means that LacI must be constitutively expressed in ''B.subtilis'' in order to use the promoter hyper-spank as an inducible promoter.
'''To get the highest level of translation from this Promoter-RBS combination it must be connected to a coding region preceded by a coding region prefix<cite>1</cite>. A standard prefix will increase the distance between the RBS and the start codon, reducing translational efficiency.'''
false
false
_199_
0
3475
9
It's complicated
false
The sequence of promoter hyperspank was obtained from the ''B. subtilis'' integration vector pDR111 and RBS-spoVG were obtained from papers<cite>1</cite> and the sequence synthesised by GeneArt
false
Chris Hirst
component1992693
1
BBa_K143015
component1992695
1
BBa_K143021
annotation1992693
1
BBa_K143015
range1992693
1
1
101
annotation1992695
1
BBa_K143021
range1992695
1
110
121
BBa_K143015
1
Ph-s
Promoter hyper-spank for B. subtilis
2008-09-17T11:00:00Z
2015-05-08T01:10:23Z
The part was designed using the sequence from the ''B.subtilis'' genome and from previously published papers <cite>1</cite><cite>2</cite><cite>3</cite>. This sequence was then synthesised by Geneart.
Promoter hyper-spank is an inducible promoter that has been designed for high expression in ''B.subtilis''. Gene expression under the promoter hyper-spank can be induced by addition of Isopropyl β-D-1-thiogalactopyranoside (IPTG). The context with which we used the promoter hyper-spank, was to take an input of IPTG and give '''Polymerase Per Second'''(PoPS) as an output. IPTG does not induce the promoter hyper-spank directly, but requires the transcriptional regulator '''LacI''', (<bbpart>BBa_K413035</bbpart>). This means that LacI must be constitutively expressed in ''B.subtilis'' in order to use the promoter hyper-spank.
false
false
_199_
0
3475
9
Not in stock
false
Biobrick standard was applied to the promoter hyper-spank sequence.
false
Chris Hirst
annotation1976423
1
LacI Operator
range1976423
1
10
30
annotation1976426
1
LacI Operator
range1976426
1
81
101
annotation1976425
1
Sigma A -10
range1976425
1
69
74
annotation1976424
1
Sigma A -35
range1976424
1
46
50
BBa_K143021
1
RBS-spoVG
SpoVG ribosome binding site (RBS) for B. subtilis
2008-09-16T11:00:00Z
2015-05-08T01:10:23Z
The sequence was taken from a previous research paper [1] and was constructed by Geneart.
Released HQ 2013
Description: SpoVG is an endogenous ribosome binding site from B.subtilis. The sequence of the spoVG ribosome binding site is AAAGGUGGUGA which is complementary to the sequence UUUCCUCCACU from the 3' region of the 16s rRNA from B.subtilis. Previous research showed that the predicted binding energy of the 16s rRNA to the RBS is -19kcal <cite>1</cite>
false
true
_199_
0
2090
9
In stock
false
In order to ensure that the RBS is functional the actual ribosome binding site was maintained and the distance between the RBS and the start codon maintained. In order to conform to the biobrick standard the sequence flanking the RBS had to be changed but the distance between the promoter and RBS, and start codon and RBS was maintained.
false
James Chappell
annotation1975997
1
rbs
range1975997
1
1
12
BBa_K143012
1
Pveg
Promoter veg a constitutive promoter for B. subtilis
2008-09-10T11:00:00Z
2015-05-08T01:10:23Z
The Pveg promoter was suggested to us by Dr. Jan-Willem Veening of Newcastle University. This sequence supplied was compared to that of the DBTBS database<cite>#3</cite> then a section containing the binding site synthesised by Geneart.
Released HQ 2013
Pveg is a constitutive promoter that constitutively expresses the P43 protein in ''B.subtilis''. Pveg contains binding sites for the ''B.sutbilis'' major sigma factor<cite>#1</cite>. Pveg in ''B.subtilis'' utilises two binding sites to cause high expression of genes<cite>#2</cite>, however our Pveg is lacking the upstream site to give a medium level of gene expression. It has been noted that the sporulation master regulatoion factor spoOA interacts with Pveg though it is not known how<cite>#3</cite>. The context with which we used the promoter Pveg is as a '''Polymerase Per Second''' (PoPS) generator.
false
true
_199_
0
2090
9
In stock
false
The biobrick part was designed to include a single binding site for the ''B.subtilis major sigma factor. In addition the biobrick standard was applied to the promoter Pveg sequence.
false
James Chappell
annotation1975704
1
Sigma A-35
range1975704
1
63
68
annotation1975705
1
Sigma A -10
range1975705
1
86
91
BBa_K143062
1
LacI-T
LacI repressor protein - Terminator
2008-09-30T11:00:00Z
2015-05-08T01:10:24Z
LacI was produced by PCR cloning using Pfu form the ''B. subtilis'' integration vector and cloned into a BioBrick with the registry double terminator.
LacI transcriptional repressor protein (<bbpart>BBa_K143033</bbpart>) coupled to the double terminator (<bbpart>BBa_B0015</bbpart>.
The LacI does not possess a LVA degradation tag and gas a short (3 amino acid) N-terminal deletion consistent with LacI used in conjunction with ''B. subtilis''.
LacI can be used in conjunction with the lac operon promoter (<bbpart>BBa_K143015</bbpart>), where the LacI will act as a receiver for an IPTG input to result in a '''Polymerases per second''' (PoPS) output.
The double terminator is the most commonly used terminator and is a combination of parts <bbpart>BBa_B0010</bbpart> and <bbpart>BBa_B0012</bbpart>.
The double terminator allows the LacI to be easily incorporated into a closed transcriptional unit.
false
false
_199_
0
3475
9
It's complicated
false
LacI was identified from the pDR111 ''B. subtilis'' integration vector. The double terminator is the most commonly used registry terminator.
false
Chris Hirst
component1994510
1
BBa_B0010
component1994512
1
BBa_B0012
component1994509
1
BBa_K143033
annotation1994510
1
BBa_B0010
range1994510
1
1095
1174
annotation1994509
1
BBa_K143033
range1994509
1
1
1086
annotation1994512
1
BBa_B0012
range1994512
1
1183
1223
BBa_B0012
1
BBa_B0012
TE from coliphageT7
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>.
Released HQ 2013
Transcription terminator for the <i>E.coli</i> RNA polymerase.
false
false
_1_
0
24
7
In stock
false
<P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator.
false
Reshma Shetty
annotation7020
1
BBa_B0012
range7020
1
1
41
annotation1690
1
polya
range1690
1
28
41
annotation1687
1
stop
range1687
1
34
34
annotation1686
1
T7 TE
range1686
1
8
27
BBa_K143053
1
Pveg-spoVG
Promoter Pveg and RBS spoVG for B. subtilis
2008-10-07T11:00:00Z
2015-05-08T01:10:24Z
Pveg-spoVG was synthesised by GeneArt
Released HQ 2013
Constitutive promoter veg(<bbpart>BBa_K143012</bbpart>) coupled to the strong Ribosome Binding Site spoVG(<bbpart>BBa_K143021</bbpart>) from ''B. subtilis''.
Pveg-spoVG can be used in the context of a '''Ribosomes per second''' (RiPS) output generator
'''To get the highest level of translation from this Promoter-RBS combination it must be connected to a coding region preceded by a coding region prefix<cite>1</cite>. A standard prefix will increase the distance between the RBS and the start codon, reducing translational efficiency.'''
false
true
_199_
0
3475
9
In stock
false
The sequence of Pveg was obtained from the DBTBS<cite>1</cite> and RBS-spoVG were obtained from papers<cite>2</cite> and the sequence synthesised by GeneArt
true
Chris Hirst
component1979397
1
BBa_K143021
component1979395
1
BBa_K143012
annotation1979395
1
BBa_K143012
range1979395
1
1
97
annotation1979397
1
BBa_K143021
range1979397
1
106
117
BBa_B0010
1
BBa_B0010
T1 from E. coli rrnB
2003-11-19T12:00:00Z
2015-08-31T04:07:20Z
Transcriptional terminator consisting of a 64 bp stem-loop.
false
false
_1_
0
24
7
In stock
false
true
Randy Rettberg
annotation7018
1
BBa_B0010
range7018
1
1
80
annotation4184
1
stem_loop
range4184
1
12
55
BBa_K606010
1
BBa_K606010
LacI strong expression casette for B. Subtilis
2011-07-06T11:00:00Z
2015-05-08T01:12:51Z
This part comes from the already existing K143053 and K143062 biobricks
This part is made to produce an expression of LacI in the B. Subtilis cell, in order to control the expression of the promoter pHyperSpank (K143055) level of expression. This is a sub-part of the IPTG inducible expression cassette K606011 for Bacillus Subtilis
false
false
_778_
0
8998
9
It's complicated
false
This is just the fusion of the two cassette. The system is in the pSB1C3 E. Coli cloning vector
false
Cyrille Pauthenier
component2123100
1
BBa_K143053
component2123112
1
BBa_K143062
annotation2123100
1
BBa_K143053
range2123100
1
1
117
annotation2123112
1
BBa_K143062
range2123112
1
124
1346
BBa_K606011
1
BBa_K606011
IPTG/Lactose inducible expression casette for B. Subtilis
2011-07-06T11:00:00Z
2015-05-08T01:12:51Z
This part is the fusion of the biobrick K606010 and K143055
This part in an IPTG/Lactose inducible expression casette for Bacillus Subtilis. It is build to have a slow and controlable response with the quantity of IPTG introduced in the medium.
false
false
_778_
0
8998
9
Not in stock
false
The experiments have still to be done. The host plasmid is pSB1K3
false
Cyrille Pauthenier
component2123139
1
BBa_K143055
component2123131
1
BBa_K606010
annotation2123139
1
BBa_K143055
range2123139
1
1355
1475
annotation2123131
1
BBa_K606010
range2123131
1
1
1346
BBa_K143033
1
LacI
LacI (Lva<sup>-</sup>, N-terminal deletion) regulatory protein
2008-09-15T11:00:00Z
2015-05-08T01:10:24Z
The LacI gene was cloned from''B. subtilis'' shuttle vector pDR111 using Pfu DNA polymerase PCR
LacI is a regulatory protein responsible for the repression of many catabolite genes. Transcription is regulated by proteins which bind operator sequences around the transcription start site. These proteins can positively affect transcription (activators) or negatively affect transcription (reppresors). Some repressor proteins can be inactivted however by addition of an inducer, such as IPTG or certain sugars.
LacI if the regulator protein for the lactose operon in ''E.coli'' and the hyper-spank protein of ''B. subtilis''<cite>#1</cite>(<bbpart>BBaK143015</bbpart>) and is responsible for ensuring that in the absence of lactose (or IPTG) that there is no expression trough these promoter. LacI is not endogenous to ''B. subtilis'', so LacI will need to be expressed in the host in order for the hyper-spank promoter to be regulated. In the presence of IPTG or lactose, the LacI tetramer is unable to bind DNA and so transcription resumes.
This version of LacI lacks a Lva degradation tag and has a small(3 amino acid) N-terminal deletion relative to the current registry LacI (<bbpart>BBa_C0012</bbpart)> and is derivatives. The N-terminal deletion appears to be common to most of the LacI genes used in conjunction with ''B. subtilis'' though both forms are found in ''E.coli'' (in differing strains).
LacI was used in conjunction with the '''Hyper-spank promoter''' (<bbpart>BBa_K143015<bbpart>) and acted as an input adaptor for a '''Polymerases per second''' (POPS) output
====References====
<biblio>
#1 pmid=16166525
</biblio>
false
false
_199_
0
3475
9
It's complicated
false
LacI was located in the sequence of the ''B. subtilis'' shuttle vector pDR111. This version of LacI lacks a Ltva degradation sequence and has a small N-terminal deletion that is observed in many LacI used in studies on ''B.subtilis''. In particular, this LacI protein is used in pDR111 to regulate expression of the inducible Phyper-spank protein (<bbpart>BBa_K143015</bbpart>) (also used in the pDR111 vector). The BioBrick prefix and suffix were applied to the gene
false
Chris Hirst
annotation1994271
1
stop
range1994271
1
1081
1083
annotation1994272
1
stop
range1994272
1
1084
1086
annotation1992702
1
start
range1992702
1
1
3
annotation1975974
1
LacI (Lva-, N-terminal deletion) regulatory protein
range1975974
1
1
1080
BBa_K143062_sequence
1
atgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaaacggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_B0010_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc
BBa_K143053_sequence
1
aattttgtcaaaataattttattgacaacgtcttattaacgttgatataatttaaattttatttgacaaaaatgggctcgtgttgtacaataaatgttactagagaaaggtggtgaa
BBa_K143033_sequence
1
atgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaaacggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtaataa
BBa_K143021_sequence
1
aaaggtggtgaa
BBa_K143015_sequence
1
ctcgagggtaaatgtgagcactcacaattcattttgcaaaagttgttgactttatctacaaggtgtggcataatgtgtgtaattgtgagcggataacaatt
BBa_K143055_sequence
1
ctcgagggtaaatgtgagcactcacaattcattttgcaaaagttgttgactttatctacaaggtgtggcataatgtgtgtaattgtgagcggataacaatttactagagaaaggtggtgaa
BBa_K143012_sequence
1
aattttgtcaaaataattttattgacaacgtcttattaacgttgatataatttaaattttatttgacaaaaatgggctcgtgttgtacaataaatgt
BBa_K606011_sequence
1
aattttgtcaaaataattttattgacaacgtcttattaacgttgatataatttaaattttatttgacaaaaatgggctcgtgttgtacaataaatgttactagagaaaggtggtgaatactagatgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaaacggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatactagagctcgagggtaaatgtgagcactcacaattcattttgcaaaagttgttgactttatctacaaggtgtggcataatgtgtgtaattgtgagcggataacaatttactagagaaaggtggtgaa
BBa_K606010_sequence
1
aattttgtcaaaataattttattgacaacgtcttattaacgttgatataatttaaattttatttgacaaaaatgggctcgtgttgtacaataaatgttactagagaaaggtggtgaatactagatgaaaccagtaacgttatacgatgtcgcagagtatgccggtgtctcttatcagaccgtttcccgcgtggtgaaccaggccagccacgtttctgcgaaaacgcgggaaaaagtggaagcggcgatggcggagctgaattacattcccaaccgcgtggcacaacaactggcgggcaaacagtcgttgctgattggcgttgccacctccagtctggccctgcacgcgccgtcgcaaattgtcgcggcgattaaatctcgcgccgatcaactgggtgccagcgtggtggtgtcgatggtagaacgaagcggcgtcgaagcctgtaaaacggcggtgcacaatcttctcgcgcaacgcgtcagtgggctgatcattaactatccgctggatgaccaggatgccattgctgtggaagctgcctgcactaatgttccggcgttatttcttgatgtctctgaccagacacccatcaacagtattattttctcccatgaagacggtacgcgactgggcgtggagcatctggtcgcattgggtcaccagcaaatcgcgctgttagcgggcccattaagttctgtctcggcgcgtctgcgtctggctggctggcataaatatctcactcgcaatcaaattcagccgatagcggaacgggaaggcgactggagtgccatgtccggttttcaacaaaccatgcaaatgctgaatgagggcatcgttcccactgcgatgctggttgccaacgatcagatggcgctgggcgcaatgcgcgccattaccgagtccgggctgcgcgttggtgcggatatctcggtagtgggatacgacgataccgaagacagctcatgttatatcccgccgtcaaccaccatcaaacaggattttcgcctgctggggcaaaccagcgtggaccgcttgctgcaactctctcagggccaggcggtgaagggcaatcagctgttgcccgtctcactggtgaaaagaaaaaccaccctggcgcccaatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_B0012_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttata
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
Chris J. Myers
James Alastair McLaughlin
2017-03-06T15:00:00.000Z