BBa_K648010 1 BBa_K648010 Lac-Inducible C230 Reporter 2011-07-03T11:00:00Z 2015-05-08T01:12:59Z Both parts came from registry stocks, parts BBa_R0010 and BBa_J33204. This is a composite part comprised of the Plac promoter (BBa_R0010) and the Xyle gene with RBS (BBa_J33204). The Xyle gene encodes for the enzyme catechol-2,3-dioxygenase (metapyrocatechase), which converts catechol to the bright yellow product 2-hydroxy-cis,cis-muconic semialdehyde. For more information see part J33204. false false _825_ 0 9871 9 Not in stock false false Jim Rose component2122815 1 BBa_R0010 component2122824 1 BBa_J33204 annotation2122815 1 BBa_R0010 range2122815 1 1 200 annotation2122824 1 BBa_J33204 range2122824 1 209 1166 BBa_R0010 1 LacI promoter (lacI regulated) 2003-01-31T12:00:00Z 2015-05-08T01:14:14Z The Plac insert was PCR'd from the MG1655 strain of E.coli K12. Released HQ 2013 Inverting regulatory region controlled by LacI (<bb_part>BBa_C0010</bb_part>, <bb_part>BBa_C0011</bb_part>, etc.) <p> The pLac regulatory region is a 243 base-pair sequence with standard BioBrick prefix and suffix sections on its ends. It contains two protein binding sites: CAP, which is generally present in E.coli and is assocciated with cell health and availability of glucose., and LacI, the Lac inhibitor <bb_part>BBa_C0010</bb_part> which binds in an dimerized cooperative manner to inhibit the transcription of the protein that follows. In the presence of lactose or IPTG, an analog of lactose, LacI is unable to correctly bind and inhibit transcription. This allows <bb_part>BBa_R0010</bb_part> to be used as a inverter or as a detector of lactose or IPTG. false true _1_ 0 24 7 In stock false <P> <P><P> LacI binds to this regulator. This part is incompatible with species containing active LacI coding regions. Lactose and IPTG disable the operation of LacI and this regulator. This part is incompatible with environments containing lactose or lactose analogs. true annotation1961222 1 BBa_R0010 range1961222 1 1 200 annotation1961226 1 LacI binding site range1961226 1 166 200 annotation1961221 1 end of LacI coding region (inactive) range1961221 1 1 88 annotation1961223 1 CAP binding site range1961223 1 89 126 annotation1961224 1 -35 range1961224 1 137 142 annotation1961227 1 start range1961227 1 173 173 annotation1961225 1 -10 range1961225 1 161 166 BBa_J33204 1 BBa_J33204 xylE reporter gene with rbs 2006-10-16T11:00:00Z 2015-08-31T04:08:46Z The template DNA was kindly supplied by Dr. Peter Williams of the University of Wales, Bangor. The primer design was based on Genbank sequence M64747 (GI:151718). The sequence reported here was confirmed by sequencing the Biobrick construct. Released HQ 2013 This part includes the xylE gene from the Pseudomonas putida TOL (naphthalene and xylene degradadative plasmid) pWW0. This gene encodes the enzyme catechol-2,3-dioxygenase (metapyrocatechase), which converts catechol to the bright yellow product 2-hydroxy-cis,cis-muconic semialdehyde. This is a useful reporter gene; colonies or broths expressing active XylE, in the presence of oxygen, will rapidly convert catechol, a cheap colourless substrate, to a bright yellow compound with an absorbance maximum around 377 nm. The part includes the native ribosome binding site, so simply needs to be added after a suitable promoter to act as a reporter. I have previously used this gene to generate whole cell biosensors for various heavy metals. Note that, unlike Xgal etc., catechol in solution is prone to spontaneous oxidation resulting in brown melanin-like polymeric products, so is not stable enough to incorporate into plates or growth media; it should be dripped onto colonies (I use 10 mM catechol in water for this) or added to liquid cultures at a final concentration of about 0.5 mM prior to assay. Note also that there is a SacI site at the very start of the part, when the prefix is included, so this can be used as a replacement vector to introduce PCR products with SacI-SpeI ends into pSB1A2 giving them full Biobrick prefixes and suffixes (but don't forget the G base before the SpeI site). This results in shorter non-complementary tails on PCR primers than using a full prefix or suffix. You can test for colonies that have lost xylE using catechol as described above. false false _63_ 0 837 63 In stock true Note that this sequence includes the native ribsomome binding site. Also, when the prefix is included, there is a SacI site at the start, which allows this part to be used as a vector for insertion of PCR products with SacI-SpeI ends into pSB1A2, replacing xylE, giving the full Biobrick prefixes and suffixes (but don't forget the G base before the SpeI site). This results in shorter non-complementary tails on PCR primers than using a full prefix or suffix. You can test for colonies that have lost xylE using catechol as described above. true Chris French annotation1903407 1 cds range1903407 1 27 950 annotation1903406 1 rbs range1903406 1 14 19 BBa_K648010_sequence 1 caatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacacatactagagctcatgaactatgaagaggtgacgtcatgaacaaaggtgtaatgcgaccgggccatgtgcagctgcgtgtactggacatgagcaaggccctggaacactacgtcgagttgctgggcctgatcgagatggaccgtgacgaccagggccgtgtctatctgaaggcttggaccgaagtggataagttttccctggtgctacgcgaggctgacgagccgggcatggattttatgggtttcaaggttgtggatgaggatgctctccggcaactggagcgggatctgatggcatatggctgtgccgttgagcagctacccgcaggtgaactgaacagttgtggccggcgcgtgcgcttccaggccccctccgggcatcacttcgagttgtatgcagacaaggaatatactggaaagtggggtttgaatgacgtcaatcccgaggcatggccgcgcgatctgaaaggtatggcggctgtgcgtttcgaccacgccctcatgtatggcgacgaattgccggcgacctatgacctgttcaccaaggtgctcggtttctatctggccgaacaggtgctggacgaaaatggcacgcgcgtcgcccagtttctcagtctgtcgaccaaggcccacgacgtggccttcattcaccatccggaaaaaggccgcctccatcatgtgtccttccacctcgaaacctgggaagacttgcttcgcgccgccgacctgatctccatgaccgacacatctatcgatatcggcccaacccgccacggcctcactcacggcaagaccatctacttcttcgacccgtccggtaaccgcaacgaagtgttctgcgggggagattacaactacccggaccacaaaccggtgacctggaccaccgaccagctgggcaaggcgatcttttaccacgaccgcattctcaacgaacgattcatgaccgtgctgacctgatggtccgg BBa_R0010_sequence 1 caatacgcaaaccgcctctccccgcgcgttggccgattcattaatgcagctggcacgacaggtttcccgactggaaagcgggcagtgagcgcaacgcaattaatgtgagttagctcactcattaggcaccccaggctttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacaca BBa_J33204_sequence 1 ctcatgaactatgaagaggtgacgtcatgaacaaaggtgtaatgcgaccgggccatgtgcagctgcgtgtactggacatgagcaaggccctggaacactacgtcgagttgctgggcctgatcgagatggaccgtgacgaccagggccgtgtctatctgaaggcttggaccgaagtggataagttttccctggtgctacgcgaggctgacgagccgggcatggattttatgggtttcaaggttgtggatgaggatgctctccggcaactggagcgggatctgatggcatatggctgtgccgttgagcagctacccgcaggtgaactgaacagttgtggccggcgcgtgcgcttccaggccccctccgggcatcacttcgagttgtatgcagacaaggaatatactggaaagtggggtttgaatgacgtcaatcccgaggcatggccgcgcgatctgaaaggtatggcggctgtgcgtttcgaccacgccctcatgtatggcgacgaattgccggcgacctatgacctgttcaccaaggtgctcggtttctatctggccgaacaggtgctggacgaaaatggcacgcgcgtcgcccagtttctcagtctgtcgaccaaggcccacgacgtggccttcattcaccatccggaaaaaggccgcctccatcatgtgtccttccacctcgaaacctgggaagacttgcttcgcgccgccgacctgatctccatgaccgacacatctatcgatatcggcccaacccgccacggcctcactcacggcaagaccatctacttcttcgacccgtccggtaaccgcaacgaagtgttctgcgggggagattacaactacccggaccacaaaccggtgacctggaccaccgaccagctgggcaaggcgatcttttaccacgaccgcattctcaacgaacgattcatgaccgtgctgacctgatggtccgg igem2sbol 1 iGEM to SBOL conversion Conversion of the iGEM parts registry to SBOL2.1 Chris J. Myers James Alastair McLaughlin 2017-03-06T15:00:00.000Z