BBa_K648011 1 BBa_K648011 Standard 25-Ready Xyle Reporter 2011-07-03T11:00:00Z 2015-05-08T01:12:59Z The original genetic material for this part came from part BBa_K316007 which was mutated via PCR based site-directed mutagensis. The xyle portion of this large part was then amplified via PCR reaction and cloned into a new vector along with a prefix/suffix for standard 25 assembly. This is a mutated version of the Xyle reporter gene which encodes for the enzyme catechol-2,3-dioxygenase (metapyrocatechase), which converts catechol to the bright yellow product 2-hydroxy-cis,cis-muconic semialdehyde. This version of Xyle has been made compatible with standard 25 assembly methods by removing three restriction sites (two NgoMIV sites: at bp 315 and 486, as well as one AgeI site: at bp 837). These mutations were made synonymous with the original sequence and codon optimized for E. Coli. Because of the synonymous mutations, this gene can be easily used to create fusion protein parts. For more information on the Xyle gene and its uses as a reporter see part BBa_J33204. false false _825_ 0 9871 9 In stock true The mutations in this gene were made so that they were synonymous and codon optimized for E. coli cells. The part also contains the prefix/suffix for standard 25 assembly with addition restriction sites NgoMIV and AgeI. false Jim Rose annotation2122825 1 misc range2122825 1 1 918 BBa_K648013 1 BBa_K648013 GFP with Standard 25 Prefix/Suffix 2011-07-03T11:00:00Z 2016-01-25T02:32:21Z This part is similar to the part BBa_E0040 commonly used as a reporter. This is the standard GFP protein reporter (E0040) cloned with the prefix/suffix required for standard 25 assembly. It can easily be used to create fusion proteins through this method. false false _825_ 4206 9871 9 In stock false This part contains the AgeI and NgoMIV sites as part of it's prefix/suffix that allows it to be used in standard 25 assembly. It was synthesized through PCR oligo synthesis methods using the following primers: Forward (56.88 degrees) TATTGAATTCGCGGCCGCTTCTAGATGGCCGGCCGTAAAGGAGAAGAACTTTTC Reverse (56.95 degrees) AATACTGCAGCGGCCGCTACTAGTATTAACCGGTCTTGTCGTCATCATCTTTATAAT false Jim Rose annotation2122827 1 misc range2122827 1 1 735 BBa_B0012 1 BBa_B0012 TE from coliphageT7 2003-01-31T12:00:00Z 2015-08-31T04:07:20Z Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>. Released HQ 2013 Transcription terminator for the <i>E.coli</i> RNA polymerase. false false _1_ 0 24 7 In stock false <P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator. false Reshma Shetty annotation1690 1 polya range1690 1 28 41 annotation7020 1 BBa_B0012 range7020 1 1 41 annotation1687 1 stop range1687 1 34 34 annotation1686 1 T7 TE range1686 1 8 27 BBa_B0015 1 BBa_B0015 double terminator (B0010-B0012) 2003-07-16T11:00:00Z 2015-08-31T04:07:20Z Released HQ 2013 Double terminator consisting of BBa_B0010 and BBa_B0012 false true _1_ 0 24 7 In stock false true Reshma Shetty component1916612 1 BBa_B0012 component1916610 1 BBa_B0010 annotation1916610 1 BBa_B0010 range1916610 1 1 80 annotation1916612 1 BBa_B0012 range1916612 1 89 129 BBa_B0010 1 BBa_B0010 T1 from E. coli rrnB 2003-11-19T12:00:00Z 2015-08-31T04:07:20Z Transcriptional terminator consisting of a 64 bp stem-loop. false false _1_ 0 24 7 In stock false true Randy Rettberg annotation4184 1 stem_loop range4184 1 12 55 annotation7018 1 BBa_B0010 range7018 1 1 80 BBa_K648008 1 BBa_K648008 TEV protease cleaveage site with Standard 25 Prefix/Suffix 2011-07-03T11:00:00Z 2015-05-08T01:12:59Z Phan, J., Zdanov, A., Evdokimov, A. G., Tropea, J. E., Peters, H. P. K., Kapust, R. B., Li, M., Wlodawer, A., and Waugh, D. S. (2002). Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 277: 50564-50572. This is the cleaveage site for th Tobacco etch virus(TEV) protease commonly used for cleaving fusion proteins. It encodes for the amino acids E N L Y F Q G which are cleaved by the TEV protease. This part also contains the prefix/suffix required for standard 25 assembly into fusion parts. false false _825_ 0 9871 9 In stock false This part contains the AgeI and NgoMIV sites as part of it's prefix/suffix that allows it to be used in standard 25 assembly. This part was synthesized through PCR oligo synthesis methods using the following primers: Forward 5'---ATTAGAATTCGCGGCCGCTTCTAGATGGCCGGCGAGAATTTGTATTTTCAGGG---3' Reverse 5'---TAATCTGCAGCGGCCGCTACTAGTATTAACCGGTACCCTGAAAATACAAATTCTC---3' false Jim Rose BBa_J23100 1 BBa_J23100 constitutive promoter family member 2006-08-03T11:00:00Z 2015-08-31T04:08:40Z Isolated from library of promoters Released HQ 2013 Replace later false true _52_ 0 483 95 In stock true N/A true John Anderson BBa_K648014 1 BBa_K648014 Fast-Fusion GFP-Xyle Reporter (TEV cleaveage with small linker) 2011-07-04T11:00:00Z 2015-05-08T01:12:59Z The design of this part was inspired by the Imperial College London 2010 iGEM Team's Fast-Response module, part BBa_K316007. This is a fast-acting reporter using the Xyle gene (BBa_K648011) fused to GFP. In its normal un-cleaved state the polymerization ability necessary for enzymatic action is inactivated. Once the fusion protein is cleaved by the TEV protease the catechol-2,3-dioxygenase enzyme encoded by the Xyle gene is able to convert catechol to the bright yellow product 2-hydroxy-cis,cis-muconic semialdehyde. This reporter is able to produce a visible color response in a matter of minutes. This version uses the TEV cleavage site (BBa_K648008) followed by the smallest of the three flexible fusion protein linkers (BBa_K648005). The linker is attached to the N-terminus of the Xyle gene. false false _825_ 0 9871 9 Not in stock false All parts were assembled via standard 25 assembly methods. false Jim Rose component2122887 1 BBa_J23100 component2122892 1 BBa_K648008 component2122902 1 BBa_B0015 component2122889 1 BBa_B0034 component2122895 1 BBa_K648011 component2122893 1 BBa_K648005 component2122891 1 BBa_K648013 annotation2122889 1 BBa_B0034 range2122889 1 44 55 annotation2122891 1 BBa_K648013 range2122891 1 64 798 annotation2122887 1 BBa_J23100 range2122887 1 1 35 annotation2122895 1 BBa_K648011 range2122895 1 856 1773 annotation2122902 1 BBa_B0015 range2122902 1 1782 1910 annotation2122892 1 BBa_K648008 range2122892 1 807 827 annotation2122893 1 BBa_K648005 range2122893 1 836 847 BBa_K648005 1 BBa_K648005 Short Fusion Protein Linker: GGSG with standard 25 prefix/suffix 2011-07-02T11:00:00Z 2015-05-08T01:12:59Z Patrick Argos, An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion, Journal of Molecular Biology, Volume 211, Issue 4, 20 February 1990, Pages 943-958, ISSN 0022-2836, DOI: 10.1016/0022-2836(90)90085-Z. (http://www.sciencedirect.com/science/article/pii/002228369090085Z) Ryoichi Arai,Hiroshi Ueda,Atsushi Kitayama,Noriho Kamiya,and Teruyuki Nagamune. Design of the linkers which effectively separate domains of a bifunctional fusion protein Protein Eng. (2001) 14(8): 529-532 doi:10.1093/protein/14.8.529 This is the shortest of the three fusion protein linkers created by the Penn State 2011 iGEM team. It encodes for the four amino acids GGSG and has a prefix and suffix compatible with assembly standard 25. It is used in one of the variants of our Fast-Fusion protein reporter system. false false _825_ 0 9871 9 In stock false This part contains the AgeI and NgoMIV sites as part of it's prefix/suffix that allows it to be used in standard 25 assembly. This part was synthesized through PCR oligo synthesis methods using the following primers: Forward (57.78 degrees) TATTGAATTCGCGGCCGCTTCTAGATGGCCGGCggtggttctggtACC Reverse (57.78 degrees) AATACTGCAGCGGCCGCTACTAGTATTAACCGGTaccagaaccaccG false Jim Rose, Alex Bina, Ben Alouidor, Brian Avison BBa_B0034 1 BBa_B0034 RBS (Elowitz 1999) -- defines RBS efficiency 2003-01-31T12:00:00Z 2015-08-31T04:07:20Z Released HQ 2013 RBS based on Elowitz repressilator. false true _1_ 0 24 7 In stock false Varies from -6 to +1 region from original sequence to accomodate BioBricks suffix. <p>No secondary structures are formed in the given RBS region. Users should check for secondary structures induced in the RBS by upstream and downstream elements in the +50 to -50 region, as such structures will greatly affect the strength of the RBS. Contact info for this part: <a href="mailto:(bchow@media.mit.edu)">Brian Chow</a> true Vinay S Mahajan, Voichita D. Marinescu, Brian Chow, Alexander D Wissner-Gross and Peter Carr IAP, 2003. annotation23325 1 conserved range23325 1 5 8 BBa_K648014_sequence 1 ttgacggctagctcagtcctaggtacagtgctagctactagagaaagaggagaaatactagagcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaagattataaagatgatgacgacaagtactagaggagaatttgtattttcagggttactagagggtggttctggttactagagaacaaaggtgtaatgcgaccgggccatgtgcagctgcgtgtactggacatgagcaaggccctggaacactacgtcgagttgctgggcctgatcgagatggaccgtgacgaccagggccgtgtctatctgaaggcttggaccgaagtggataagttttccctggtgctacgcgaggctgacgagccgggcatggattttatgggtttcaaggttgtggatgaggatgctctccggcaactggagcgggatctgatggcatatggctgtgccgttgagcagctacccgcaggtgaactgaacagttgtggccgccgcgtgcgcttccaggccccctccgggcatcacttcgagttgtatgcagacaaggaatatactggaaagtggggtttgaatgacgtcaatcccgaggcatggccgcgcgatctgaaaggtatggcggctgtgcgtttcgaccacgccctcatgtatggcgacgaattgccagcgacctatgacctgttcaccaaggtgctcggtttctatctggccgaacaggtgctggacgaaaatggcacgcgcgtcgcccagtttctcagtctgtcgaccaaggcccacgacgtggccttcattcaccatccggaaaaaggccgcctccatcatgtgtccttccacctcgaaacctgggaagacttgcttcgcgccgccgacctgatctccatgaccgacacatctatcgatatcggcccaacccgccacggcctcactcacggcaagaccatctacttcttcgacccgtccggtaaccgcaacgaagtgttctgcgggggagattacaactacccggaccacaaaccagtgacctggaccaccgaccagctgggcaaggcgatcttttaccacgaccgcattctcaacgaacgattcatgaccgtgctgacctactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata BBa_J23100_sequence 1 ttgacggctagctcagtcctaggtacagtgctagc BBa_B0010_sequence 1 ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc BBa_K648005_sequence 1 ggtggttctggt BBa_B0034_sequence 1 aaagaggagaaa BBa_K648011_sequence 1 aacaaaggtgtaatgcgaccgggccatgtgcagctgcgtgtactggacatgagcaaggccctggaacactacgtcgagttgctgggcctgatcgagatggaccgtgacgaccagggccgtgtctatctgaaggcttggaccgaagtggataagttttccctggtgctacgcgaggctgacgagccgggcatggattttatgggtttcaaggttgtggatgaggatgctctccggcaactggagcgggatctgatggcatatggctgtgccgttgagcagctacccgcaggtgaactgaacagttgtggccgccgcgtgcgcttccaggccccctccgggcatcacttcgagttgtatgcagacaaggaatatactggaaagtggggtttgaatgacgtcaatcccgaggcatggccgcgcgatctgaaaggtatggcggctgtgcgtttcgaccacgccctcatgtatggcgacgaattgccagcgacctatgacctgttcaccaaggtgctcggtttctatctggccgaacaggtgctggacgaaaatggcacgcgcgtcgcccagtttctcagtctgtcgaccaaggcccacgacgtggccttcattcaccatccggaaaaaggccgcctccatcatgtgtccttccacctcgaaacctgggaagacttgcttcgcgccgccgacctgatctccatgaccgacacatctatcgatatcggcccaacccgccacggcctcactcacggcaagaccatctacttcttcgacccgtccggtaaccgcaacgaagtgttctgcgggggagattacaactacccggaccacaaaccagtgacctggaccaccgaccagctgggcaaggcgatcttttaccacgaccgcattctcaacgaacgattcatgaccgtgctgacc BBa_K648008_sequence 1 gagaatttgtattttcagggt BBa_K648013_sequence 1 cgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaagattataaagatgatgacgacaag BBa_B0012_sequence 1 tcacactggctcaccttcgggtgggcctttctgcgtttata BBa_B0015_sequence 1 ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata igem2sbol 1 iGEM to SBOL conversion Conversion of the iGEM parts registry to SBOL2.1 James Alastair McLaughlin Chris J. Myers 2017-03-06T15:00:00.000Z