BBa_K125100
1
BBa_K125100
nir promoter from <I>Synechocystis</I> sp. PCC6803
2008-07-23T11:00:00Z
2015-05-08T01:09:44Z
The ''nirA'' promoter originates from ''Synechocystis'' sp. PCC6803.
The ''nir'' promoter is nitrate inducible.
false
false
_
0
3229
9
It's complicated
false
false
Krystle Salazar and Grace Kwan
annotation1968488
1
Ntc-B binding motif
range1968488
1
5
20
annotation1968487
1
-10 sequence
range1968487
1
73
78
annotation1968489
1
Ntc-A binding motif
range1968489
1
36
44
annotation1968486
1
nir promoter
range1968486
1
1
88
BBa_M33001
1
BBa_M33001
Nar operon promoter (narGp) => PoPs
2010-05-31T11:00:00Z
2015-05-08T01:14:01Z
Part was synthesized based on the promoter of the nar operon naturally present in E. coli.
The narG promoter is located at the beginning the nar operon and is naturally activated during nitrogen respiration of E. Coli by the Fnr protein to signal reduction of nitrate to nitrite. In the presence of nitrate, Fnr protein binds to a region upstream of narGp to act as an activator.
false
false
_577_
0
6923
9
Not in stock
false
Design includes BioBrick suffixes and prefixes, and the promoter sequence itself was checked for restriction digest sites to ensure compliance with Assembly Standard 10.
false
Daniel Bui and Aaditya Shidham
annotation2069943
1
narGp
range2069943
1
1
144
BBa_B0011
1
BBa_B0011
LuxICDABEG (+/-)
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from luxICDABEG operon terminator of Vibrio fischeri <genbank>AF170104</genbank>.
Released HQ 2013
Bidirectional transcriptional terminator consisting of a 22 bp stem-loop.</p>
false
false
_1_
0
24
7
In stock
false
<P> <P>In the naturally-occuring sequence there is a mismatch in the stem of the stem loop. This can be corrected via an A->G mutation (at position 40 -- sequence coordinate/not MFOLD coordinate). The above sequence does not reflect this mutation (but the MFOLD image does). This terminator's location cannot be found using some inverted repeat detectors like PALINDROME because it is too short and contains a mismatch. This one was found with the help of Tom Knight. It lies between two coding regions that point towards eachother.<P>
true
Reshma Shetty
annotation7019
1
BBa_B0011
range7019
1
1
46
annotation1683
1
stem_loop
range1683
1
13
35
BBa_E0040
1
GFP
green fluorescent protein derived from jellyfish Aequeora victoria wild-type GFP (SwissProt: P42212
2004-09-29T11:00:00Z
2016-01-26T02:09:38Z
Released HQ 2013
GFP (mut3b) [note that this part does not have a barcode]
false
true
_11_1_
4206
61
7
In stock
false
true
jcbraff
annotation1934520
1
GFP protein
range1934520
1
1
720
BBa_E0020
1
ecfp
engineered cyan fluorescent protein derived from A. victoria GFP
2004-03-02T12:00:00Z
2015-08-31T04:07:25Z
Released HQ 2013
-- No description --
false
false
_1_
0
24
7
In stock
false
true
Caitlin Conboy and Jennifer Braff
BBa_E0420
1
BBa_E0420
ECFP (RBS+ LVA- TERM) (B0034.E0020.B0015)
2004-03-15T12:00:00Z
2015-08-31T04:07:26Z
Released HQ 2013
Standard CFP output device w/o LVA tag.
false
true
_1_
0
24
7
In stock
false
true
Caitlin Conboy
component942780
1
BBa_B0034
component942782
1
BBa_E0020
component942797
1
BBa_B0012
component942787
1
BBa_B0010
annotation942797
1
BBa_B0012
range942797
1
838
878
annotation942787
1
BBa_B0010
range942787
1
750
829
annotation942780
1
BBa_B0034
range942780
1
1
12
annotation942782
1
BBa_E0020
range942782
1
19
741
BBa_B0034
1
BBa_B0034
RBS (Elowitz 1999) -- defines RBS efficiency
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Released HQ 2013
RBS based on Elowitz repressilator.
false
true
_1_
0
24
7
In stock
false
Varies from -6 to +1 region from original sequence to accomodate BioBricks suffix. <p>No secondary structures are formed in the given RBS region. Users should check for secondary structures induced in the RBS by upstream and downstream elements in the +50 to -50 region, as such structures will greatly affect the strength of the RBS.
Contact info for this part: <a href="mailto:(bchow@media.mit.edu)">Brian Chow</a>
true
Vinay S Mahajan, Voichita D. Marinescu, Brian Chow, Alexander D Wissner-Gross and Peter Carr IAP, 2003.
annotation23325
1
conserved
range23325
1
5
8
BBa_B0010
1
BBa_B0010
T1 from E. coli rrnB
2003-11-19T12:00:00Z
2015-08-31T04:07:20Z
Transcriptional terminator consisting of a 64 bp stem-loop.
false
false
_1_
0
24
7
In stock
false
true
Randy Rettberg
annotation7018
1
BBa_B0010
range7018
1
1
80
annotation4184
1
stem_loop
range4184
1
12
55
BBa_K774006
1
MB-CFP
Mammalian-Bacterial promoter with eCFP reporter: CArG promoter sequence + BBaK216005 + BBa_E0420
2012-09-18T11:00:00Z
2015-05-08T01:13:15Z
E9-ns2 CArG promoter sequence + BHN + BBaK216005
Released HQ 2013
Our hybrid promoter hopes to add to the systems already in the registry by creating a hybrid promoter that combines the bacterial promoter PyeaR and the mammalian CArG element , in the orientation mammalian to bacterial, both of which respond to exogenous nitrogenous species. Combining the two would allow a more modular NO sensor that can be used in mammalian and bacterial cells interchangeably. The hybrid promoter has been attached to the reporter: enhanced Cyan Fluorescence Protein (eCFP). The hybrid promoter has been characterised by observing expression of flourescent protein, and found to have increased transcription in response to increasing concentrations of potassium nitrate.
false
false
_1026_
0
12400
9
In stock
true
This biobrick contains the RBS and terminators, meaning we can simply add the promoter of choice to complete the system.
false
NRP-UEA-Norwich
component2187180
1
BBa_K774001
component2187190
1
BBa_E0420
annotation2187190
1
BBa_E0420
range2187190
1
217
1094
annotation2187180
1
BBa_K774001
range2187180
1
1
208
BBa_K774102
1
BBa_K774102
Multi sensor - for calculation of specific concentrations of nitrates nitrites and nitric oxide usin
2012-09-25T11:00:00Z
2015-05-08T01:13:15Z
all parts on registry
A serious problem encountered again and again by synthetic biologists is, that for a particular ligand specific promoters do not exist and that it is very difficult to construct a transcription factor that is specific to the required ligand.
There are however often broad spectrum (non-specific) promoters for a ligand of interest. These promoters and their transcription factors will induce transcription initiation when exposed to (or not exposed to) the investigated ligand, but also when under influence of other similar ligands. Assuming competitive binding, this is an interesting effect which can be exploited to give specific and accurate concentrations of each of the inducing ligands. In its simplest form of the Multi-Sensor system, there are two different transcription factors, each of which will cause transcription when exposed to either one or both of two different competitive ligands. They both posses different active sites, which causes there to be a different bias in both of those for each ligand. This will lead to transcription rates of one of the promoters to indicate a ratio between the two different ligands (for example nitrates and nitrites) as seen in line 1 ("Figure 3."). Because the two different transcription factors have different binding efficiencies to the two ligands, the line of the other promoter will take a different angle (line 2). The point where these two lines cross, gives the precise concentration of both ligands even though the two different promoters are non-specific.
Figure 4: Each plane represents a range of possible concentration ratios of three ligands at a particular transcription rate (arbitrary). The intersection of the two different planes is shown as a purple line. It represents the range of possible ratios when only two planes are observed.
Figure 5: Each plane represents a range of possible concentration ratios of three ligands at a particular transcription rate (arbitrary). The intersection between each pair of planes is indicated by a line. At the point where these lines intersect is the point where all three planes intersect; this point gives the exact concentration of each of the three different substrates.
This effect can be modelled for more than two substrates. Visually the system can be designed with each concentration being a different access on a graph (which can soon become hyper dimensional). When you add a third ligand it will result in the two lines in Figure 5. to become two planes which intersect along one line. This means that a third promoter and transcription factor is necessary (the same way that two promoters pinpoint any single point in two-dimensional space, three are needed to triangulate a point in three-dimensional space).
Once the third promoter and transcription factor is added to the graph, the three planes created intersect at a single point which gives the specific concentration of each of the ligands (Figure 5:). When four ligands are used, a hyper dimensional graph of four spatial dimensions with four different plains, each pertaining to a single promoter and transcription factor, will all intersect at a single point. This point will give the specific concentration of each of the four ligands (and so on and so on).
Functional construction
There are a number of different ways in which this theory could be put into practice. One would involve each one of the different promoters selected to be be fused to a fluorescent protein and cloned into different cells.
In addition a constitutively expressed fluorescent protein will be used to control for metabolic and cell mass differences. A homogenised sample, split between each of the culture media, containing fluorescent protein with different promoters and The expression of each fluorescent protein will be measured using fluorometer and the data is to be mathematically analysed (see below). This will give the exact concentrations of each of the ligands.
Another possible way of constructing the Multi-sensor system, would be to ligate all promoter - fluorescent sequences into one plasmid and transform this into a single cell. At this point the constitutively synthesised fluorescent protein for control, is no longer necessary because the comparison is made between expressions of different proteins within the same cell. This system has advantages and disadvantages. Because each cell contains the all promoters necessary for the system, each single cell can give a reading for the chemical concentrations of the ligands investigated. This means in its direct vicinity, that each cell can become a single ??? pixel???. This would allow can for an image of chemical concentrations throughout a sample. The useful applications are vast. For example, in environments where diffusion rate is low and chemical concentrations vary e.g. soil, the multi-sensor system would be able to give accurate and locally precise data. It enables exact measurements of concentrations via laser microscopy but an overview of a great amount of data would also be available with just a simple photograph.
true
false
_1026_
0
13139
9
Discontinued
false
there are possible issues with peak seperation in a flourimiter.
false
Pascoe James Harvey
component2202212
1
BBa_K125100
component2202229
1
BBa_K774006
component2202243
1
BBa_K188634
component2202234
1
BBa_E1010
component2202214
1
BBa_E0040
component2202231
1
BBa_M33001
annotation2202214
1
BBa_E0040
range2202214
1
95
814
annotation2202234
1
BBa_E1010
range2202234
1
2095
2775
annotation2202243
1
BBa_K188634
range2202243
1
2077
2903
annotation2202212
1
BBa_K125100
range2202212
1
1
88
annotation2202229
1
BBa_K774006
range2202229
1
823
1916
annotation2202231
1
BBa_M33001
range2202231
1
1925
2068
BBa_K774001
1
M-B
Mammalian-Bacterial Promoter: E9-ns2 CArG promoter sequence + BHN + BBaK216005
2012-06-24T11:00:00Z
2015-05-08T01:13:15Z
PyeaR promoter (BBaK216005) and the E9-ns2 CArG promoter (Ref1)
Ref1: Scott, S.D., Joiner, M.C. & Marples, B., 2002. Optimizing radiation-responsive gene promoters for radiogenetic cancer therapy. Gene therapy, 9(20), p.1396-402. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12365005 [Accessed June 24, 2012].
Released HQ 2013
A hybrid of the PyeaR promoter (BBaK216005) and the E9-ns2 CArG promoter (Ref1). Two versions will be synthesised, with the promoters altering their position in relation to the 5???-end of the sequence.
false
false
_1026_
0
11706
9
In stock
true
To provide additional restriction enzyme sites that may become useful during later cloning steps, BamHI, HindIII and NdeI have been added between the 2 promoters.
It is envisaged that any open reading frame (e.g. RFP or GFP) will be cloned ???downstream??? (i.e. at the 3???-end) of these promoter sequences.
false
NRP-UEA-Norwich
annotation2177193
1
BHN
range2177193
1
91
109
annotation2177194
1
BBaK216005
range2177194
1
110
208
annotation2177192
1
E9-ns2 CArG promoter
range2177192
1
1
90
BBa_K188634
1
BBa_K188634
RBS+mRFP+double Terminator
2009-10-13T11:00:00Z
2015-05-08T01:11:13Z
no
RBS + highly engineered mutant of red fluorescent protein from Discosoma striata (coral) + double terminator
false
false
_296_
0
4218
9
It's complicated
false
no
false
shau-yi wu
component2249810
1
BBa_B0034
component2249813
1
BBa_E1010
component2249820
1
BBa_B0014
annotation2249820
1
BBa_B0014
range2249820
1
733
827
annotation2249810
1
BBa_B0034
range2249810
1
1
12
annotation2249813
1
BBa_E1010
range2249813
1
19
724
BBa_B0014
1
BBa_B0014
double terminator (B0012-B0011)
2003-07-15T11:00:00Z
2015-08-31T04:07:20Z
Released HQ 2013
Double terminator consisting of BBa_B0012 and BBa_B0011
false
true
_1_
0
24
7
In stock
false
true
Reshma Shetty
component939303
1
BBa_B0012
component939311
1
BBa_B0011
annotation939303
1
BBa_B0012
range939303
1
1
41
annotation939311
1
BBa_B0011
range939311
1
50
95
BBa_E1010
1
mRFP1
**highly** engineered mutant of red fluorescent protein from Discosoma striata (coral)
2004-07-27T11:00:00Z
2015-08-31T04:07:26Z
Campbell et al., PNAS v99 p7877 <a href="http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pubmed&pubmedid=12060735">URL</a>
Released HQ 2013
monomeric RFP:
Red Fluorescent Protein.
Excitation peak: 584 nm
Emission peak: 607 nm
false
false
_11_1_
0
52
7
In stock
false
TAATAA double stop codon added (DE).
Four silent mutations made to remove three EcoRI sites and one PstI site: A28G, A76G, A349G, G337A.
true
Drew Endy
annotation2214014
1
Help:Barcodes
range2214014
1
682
706
annotation1014044
1
mrfp1
range1014044
1
1
675
BBa_B0012
1
BBa_B0012
TE from coliphageT7
2003-01-31T12:00:00Z
2015-08-31T04:07:20Z
Derived from the TE terminator of T7 bacteriophage between Genes 1.3 and 1.4 <genbank>V01146</genbank>.
Released HQ 2013
Transcription terminator for the <i>E.coli</i> RNA polymerase.
false
false
_1_
0
24
7
In stock
false
<P> <P>Suggested by Sri Kosuri and Drew Endy as a high efficiency terminator. The 5' end cutoff was placed immediately after the TAA stop codon and the 3' end cutoff was placed just prior to the RBS of Gene 1.4 (before AAGGAG).<P> Use anywhere transcription should be stopped when the gene of interest is upstream of this terminator.
false
Reshma Shetty
annotation1687
1
stop
range1687
1
34
34
annotation1690
1
polya
range1690
1
28
41
annotation1686
1
T7 TE
range1686
1
8
27
annotation7020
1
BBa_B0012
range7020
1
1
41
BBa_K188634_sequence
1
aaagaggagaaatactagatggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatactagagagagaatataaaaagccagattattaatccggcttttttattattt
BBa_E0020_sequence
1
atggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtgaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctggggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacatcagccacaacgtctatatcaccgccgacaagcagaagaacggcatcaaggccaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaataa
BBa_M33001_sequence
1
atcctaaaggggtatcttaggaatttactttatttttcatccccatcactcttgatcgttatcaattcccacgctgtttcagagcgttaccttgcccttaaacattagcaatgtcgatttatcagagggccgacaggctcccac
BBa_B0014_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttatatactagagagagaatataaaaagccagattattaatccggcttttttattattt
BBa_B0034_sequence
1
aaagaggagaaa
BBa_E1010_sequence
1
atggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgc
BBa_K125100_sequence
1
gctaaatgcgtaaactgcatatgccttcgctgagtgtaatttacgttacaaattttaacgaaacgggaaccctatattgatctctact
BBa_K774006_sequence
1
ccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggggatccaagcttcatatgttcccatctataatcctccctgattcttcgctgatatggtgctaaaaagtaaccaataaatggtatttaaaatgcaaattatcaggcgtaccctgaaacgtactagagaaagaggagaaatactagatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtgaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctggggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacatcagccacaacgtctatatcaccgccgacaagcagaagaacggcatcaaggccaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_B0011_sequence
1
agagaatataaaaagccagattattaatccggcttttttattattt
BBa_B0010_sequence
1
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc
BBa_K774102_sequence
1
gctaaatgcgtaaactgcatatgccttcgctgagtgtaatttacgttacaaattttaacgaaacgggaaccctatattgatctctacttactagatgcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataataatactagagccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggggatccaagcttcatatgttcccatctataatcctccctgattcttcgctgatatggtgctaaaaagtaaccaataaatggtatttaaaatgcaaattatcaggcgtaccctgaaacgtactagagaaagaggagaaatactagatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtgaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctggggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacatcagccacaacgtctatatcaccgccgacaagcagaagaacggcatcaaggccaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatactagagatcctaaaggggtatcttaggaatttactttatttttcatccccatcactcttgatcgttatcaattcccacgctgtttcagagcgttaccttgcccttaaacattagcaatgtcgatttatcagagggccgacaggctcccactactagagaaagaggagaaatactagatggcttcctccgaagacgttatcaaagagttcatgcgtttcaaagttcgtatggaaggttccgttaacggtcacgagttcgaaatcgaaggtgaaggtgaaggtcgtccgtacgaaggtacccagaccgctaaactgaaagttaccaaaggtggtccgctgccgttcgcttgggacatcctgtccccgcagttccagtacggttccaaagcttacgttaaacacccggctgacatcccggactacctgaaactgtccttcccggaaggtttcaaatgggaacgtgttatgaacttcgaagacggtggtgttgttaccgttacccaggactcctccctgcaagacggtgagttcatctacaaagttaaactgcgtggtaccaacttcccgtccgacggtccggttatgcagaaaaaaaccatgggttgggaagcttccaccgaacgtatgtacccggaagacggtgctctgaaaggtgaaatcaaaatgcgtctgaaactgaaagacggtggtcactacgacgctgaagttaaaaccacctacatggctaaaaaaccggttcagctgccgggtgcttacaaaaccgacatcaaactggacatcacctcccacaacgaagactacaccatcgttgaacagtacgaacgtgctgaaggtcgtcactccaccggtgcttaataacgctgatagtgctagtgtagatcgctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatatactagagagagaatataaaaagccagattattaatccggcttttttattattt
BBa_E0420_sequence
1
aaagaggagaaatactagatggtgagcaagggcgaggagctgttcaccggggtggtgcccatcctggtcgagctggacggcgacgtgaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatctgcaccaccggcaagctgcccgtgccctggcccaccctcgtgaccaccctgacctggggcgtgcagtgcttcagccgctaccccgaccacatgaagcagcacgacttcttcaagtccgccatgcccgaaggctacgtccaggagcgcaccatcttcttcaaggacgacggcaactacaagacccgcgccgaggtgaagttcgagggcgacaccctggtgaaccgcatcgagctgaagggcatcgacttcaaggaggacggcaacatcctggggcacaagctggagtacaactacatcagccacaacgtctatatcaccgccgacaagcagaagaacggcatcaaggccaacttcaagatccgccacaacatcgaggacggcagcgtgcagctcgccgaccactaccagcagaacacccccatcggcgacggccccgtgctgctgcccgacaaccactacctgagcacccagtccgccctgagcaaagaccccaacgagaagcgcgatcacatggtcctgctggagttcgtgaccgccgccgggatcactctcggcatggacgagctgtacaagtaataatactagagccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_E0040_sequence
1
atgcgtaaaggagaagaacttttcactggagttgtcccaattcttgttgaattagatggtgatgttaatgggcacaaattttctgtcagtggagagggtgaaggtgatgcaacatacggaaaacttacccttaaatttatttgcactactggaaaactacctgttccatggccaacacttgtcactactttcggttatggtgttcaatgctttgcgagatacccagatcatatgaaacagcatgactttttcaagagtgccatgcccgaaggttatgtacaggaaagaactatatttttcaaagatgacgggaactacaagacacgtgctgaagtcaagtttgaaggtgatacccttgttaatagaatcgagttaaaaggtattgattttaaagaagatggaaacattcttggacacaaattggaatacaactataactcacacaatgtatacatcatggcagacaaacaaaagaatggaatcaaagttaacttcaaaattagacacaacattgaagatggaagcgttcaactagcagaccattatcaacaaaatactccaattggcgatggccctgtccttttaccagacaaccattacctgtccacacaatctgccctttcgaaagatcccaacgaaaagagagaccacatggtccttcttgagtttgtaacagctgctgggattacacatggcatggatgaactatacaaataataa
BBa_B0012_sequence
1
tcacactggctcaccttcgggtgggcctttctgcgtttata
BBa_K774001_sequence
1
ccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggccatataaggggatccaagcttcatatgttcccatctataatcctccctgattcttcgctgatatggtgctaaaaagtaaccaataaatggtatttaaaatgcaaattatcaggcgtaccctgaaacg
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
James Alastair McLaughlin
Chris J. Myers
2017-03-06T15:00:00.000Z