BBa_K906010
1
BBa_K906010
Spacer with RBS and BsiWI and BssHII
2012-10-02T11:00:00Z
2015-05-08T01:13:44Z
From Synechocystis sp. PCC6803 sequence for PsbA2 promoter
http://www.ncbi.nlm.nih.gov/gene/951890
This is a part which is composed of a RBS and spacer which have been taken from Synechocystis sp. PCC 6803. The spacer is flanked by restriction sites which are not found in the sequence of Cs42. The putative RBS was identified and characterized in E. coli by the USU team from 2010. This part???s main function is to allow the modularity of the large construct Cs42s, so that each part can be used individually by teams in the future. The spacer allows for two restriction site which are located close together, to be used at the same time. It also allows for error in the predicted and actual location of the RBS. Finally, it creates the proper spacing between the RBS and the gene to be translated.
false
false
_1171_
0
12711
9
Not in stock
false
In the design of this part, the RBS was taken from Synechocystis PCC 6803 so provide the following coding region ample translation. This RBS was also shown to work in E. coli by the 2010 USU iGEM team . The restriction sites were added to allow for modularity in the composite part K906103. Spacers between the restriction sites were added to prevent a decrease in cutting efficiency near the end of the linearized DNA (A phenomena noted on New England Biolab???s page: http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/cleavage_linearized_vector.asp#.UGzuRvl25go). Two restriction sites were added to allow for easy ligation of parts. Instead of requiring restriction sites with identical overhangs, the user can synthesize complementary primers with both required restriction sites. The user can then cut the primer with the same endonucleases as the DNA and, using the primer dimer as a ???linker,??? the DNA can be easily ligated together. In this way, the order of the genes may be easily interchanged so that future teams may be able to characterize the change in production caused by reordering the genes.
false
Caleb Ford
annotation2211103
1
BsiWI
range2211103
1
1
6
annotation2211114
1
PsbA2 RBS
range2211114
1
16
38
annotation2211108
1
spacer
range2211108
1
7
9
annotation2211110
1
BssHII
range2211110
1
10
15
BBa_B1002
1
BBa_B1002
Terminator (artificial, small, %T~=85%)
2006-08-29T11:00:00Z
2015-08-31T04:07:21Z
antiquity
Artifical terminator, estimated %T~=85
false
true
_41_
0
745
41
In stock
false
Bidirectional, with the reverse estimated to be less effective than the forward. Has a polyA tail of 6 residues.
true
Haiyao Huang
annotation1898412
1
B1002
range1898412
1
1
34
annotation1898414
1
Poly A tail
range1898414
1
25
31
annotation1898415
1
Poly A tail
range1898415
1
4
9
annotation1898413
1
stem loop
range1898413
1
10
25
BBa_K906006
1
BBa_K906006
Extended psbA2 for Synechocystis
2012-08-12T11:00:00Z
2015-05-08T01:13:44Z
This promoter comes from the native sequence of the region upstream of photosystem II D1 protein in Synechocystis spp. 6803. The sequences was synthsized by DNA 2.0
This is a promoter which has an extended 5' UTR relative to the previous biobrick submission of this promoter. The 5' UTR was exteneded because the previous version of this promoter has not been verified to work in Synechocystis spp. 6803, only in E. coli. Because less is known regarding the importance of
false
false
_1171_
0
12629
9
Not in stock
false
We added an additional 113 bases onto the previous biobrick version of psbA2 in order to increase the likleyhood of it functioning in Synechocystis spp. 6803.
false
Lucas B. Harrington
annotation2179512
1
A ->T
range2179512
1
200
200
BBa_K906009
1
BBa_K906009
Spacer with RBS BclI and AflII
2012-10-02T11:00:00Z
2015-05-08T01:13:44Z
From Synechocystis sp. PCC6803 sequence for PsbA2 promoter
This is a part which is composed of a RBS and spacer which have been taken from Synechocystis sp. PCC 6803. The spacer is flanked by restriction sites which are not found in the sequence of Cs42. The putative RBS was identified and characterized in E. coli by the USU team from 2010. This part???s main function is to allow the modularity of the large construct Cs42s, so that each part can be used individually by teams in the future. The spacer allows for two restriction site which are located close together, to be used at the same time. It also allows for error in the predicted and actual location of the RBS. Finally, it creates the proper spacing between the RBS and the gene to be translated.
false
false
_1171_
0
12629
9
Not in stock
false
In the design of this part, the RBS was taken from Synechocystis PCC 6803 so provide the following coding region ample translation. This RBS was also shown to work in E. coli by the 2010 USU iGEM team . The restriction sites were added to allow for modularity in the composite part K906103. Spacers between the restriction sites were added to prevent a decrease in cutting efficiency near the end of the linearized DNA (A phenomena noted on New England Biolab???s page: http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/cleavage_linearized_vector.asp#.UGzuRvl25go). Two restriction sites were added to allow for easy ligation of parts. Instead of requiring restriction sites with identical overhangs, the user can synthesize complementary primers with both required restriction sites. The user can then cut the primer with the same endonucleases as the DNA and, using the primer dimer as a ???linker,??? the DNA can be easily ligated together. In this way, the order of the genes may be easily interchanged so that future teams may be able to characterize the change in production caused by reordering the genes.
false
Lucas B. Harrington
annotation2211112
1
Spacer
range2211112
1
7
9
annotation2211097
1
BclI
range2211097
1
1
6
annotation2211104
1
AflII
range2211104
1
10
15
annotation2211099
1
PsbA2 RBS
range2211099
1
16
38
BBa_K906008
1
BBa_K906008
CrtZ from Arabadobsis
2012-08-22T11:00:00Z
2015-05-08T01:13:44Z
The amino acid sequence that this part codes for is from the genome of Arabidopsis thaliana
This part codes for the protein sequence of beta-carotene hydroxylase (CrtZ), which converts betacarotene into zeaxanthin. It has been predicted to form insoluble inclusion bodies (~90% chance) when overexpressed in E. coli according to these two online solubility models: http://mips.helmholtz-muenchen.de/prosoII/prosoII.seam and http://www.biotech.ou.edu/
false
false
_1171_
0
12629
9
Not in stock
false
This part has been codon optimized for Synechocystis spp. 6803
false
Lucas B. Harrington
annotation2180613
1
Start
range2180613
1
1
3
annotation2180614
1
Stop
range2180614
1
931
933
BBa_K906002
1
BBa_K906002
Uracil glucosyltransferase from Crocus Sativus (UGTCs2)
2012-07-29T11:00:00Z
2015-05-08T01:13:44Z
This gene was originally identified in Crocus sativus, and has been synthesized here to optimize production in Synechocystis 6803
Uracil glucosyltransferase from Crocus Sativus (UGTCs2) is a glucosyltransferase which has been shown to be highly expressed in style branch tissues of Crocus sativus. It has been implicated as the glucosyltransferase involved in the modification of the cleavage products of ZCD. It is also thought to be necessary for the production of crocin glucosides, safarnal and picrocrocin, which are the three major components of saffron.
false
false
_1171_
0
12629
9
In stock
false
This modified version of UGTCs2 has been codon optimized for the species Synechocystis 6803. It is simply the coding region of the gene without any promoter or terminator, to allow for the most flexible application of this part.
false
Lucas B. Harrington
annotation2179292
1
Start
range2179292
1
1
3
annotation2179291
1
Stop
range2179291
1
1381
1383
BBa_K906000
1
BBa_K906000
Zeaxanthin 7,8-cleavage dioxygenase (ZCD)
2012-07-29T11:00:00Z
2015-05-08T01:13:44Z
This enzyme was first identified in Crocus sativus, the saffron plant. The originally identified gene can be found here [http://www.ncbi.nlm.nih.gov/nuccore/AJ489276.1 AJ489276.1]
This is the enzyme required to cleave zeaxanthin at the 7, 8 position to begin the enzymatic process of making crocin, picrocrocin and safranal. ZCD seems to be unique to the species Crocus sativus, and has been found to be highly expressed in the style branch tissues of this species. Also, it has been shown to produce insoluble inclusion bodies when over expressed in E. coli. As a result, the functional expression of this protein requires the use of a soluble fusion proteins, such as thioredoxin, and induction at 20degrees.
false
false
_1171_
0
12629
9
In stock
false
This modified version of ZCD has been codon optimized for the species Synechocystis 6803.
false
Lucas B. Harrington
annotation2179290
1
Stop
range2179290
1
1108
1110
annotation2179289
1
Start
range2179289
1
1
3
BBa_K906103
1
BBa_K906103
Safranal and Crocin Producing Construct (Cs42s)
2012-08-22T11:00:00Z
2015-05-08T01:13:44Z
This part has been designed by using the amino acid sequences from Crocus Sativus and Arabadopsis thalina. Please look at the individual parts pages for more information.
This is a synthesized construct which was designed to produce safranal and crocin glycosides form zeaxanthin producing cells-the chemicals characteristic of the spice saffron. It has been designed to function in Synechocystis spp. 6803 but has not been characterized in this species.
false
false
_1171_
0
12629
9
It's complicated
false
This part has been designed to function in Synechocystis through codon optimization and promoter choice. It also contains restriction sites in between the ORFs as seen in the diagram on the main page.
false
Lucas B. Harrington
component2211240
1
BBa_B1002
component2211235
1
BBa_K906011
component2211231
1
BBa_K906008
component2211215
1
BBa_K906000
component2211220
1
BBa_K906009
component2211223
1
BBa_K906002
component2211228
1
BBa_K906010
component2211212
1
BBa_K906006
annotation2211235
1
BBa_K906011
range2211235
1
3703
3717
annotation2211228
1
BBa_K906010
range2211228
1
2732
2769
annotation2211220
1
BBa_K906009
range2211220
1
1311
1348
annotation2211231
1
BBa_K906008
range2211231
1
2770
3702
annotation2211223
1
BBa_K906002
range2211223
1
1349
2731
annotation2211240
1
BBa_B1002
range2211240
1
3718
3751
annotation2211212
1
BBa_K906006
range2211212
1
1
200
annotation2211215
1
BBa_K906000
range2211215
1
201
1310
BBa_K906011
1
BBa_K906011
Spacer with MluI and SacII
2012-10-02T11:00:00Z
2015-05-08T01:13:44Z
From Synechocystis sp. PCC6803 sequence for PsbA2 promoter
http://www.ncbi.nlm.nih.gov/gene/951890
This is a part which is composed of a RBS and spacer which have been taken from Synechocystis sp. PCC 6803. The spacer is flanked by restriction sites which are not found in the sequence of Cs42. The putative RBS was identified and characterized in E. coli by the USU team from 2010. This part???s main function is to allow the modularity of the large construct Cs42s, so that each part can be used individually by teams in the future. The spacer allows for two restriction site which are located close together, to be used at the same time. It also allows for error in the predicted and actual location of the RBS. Finally, it creates the proper spacing between the RBS and the gene to be translated.
false
false
_1171_
0
12624
9
Not in stock
false
In the design of this part, the RBS was taken from Synechocystis PCC 6803 so provide the following coding region ample translation. This RBS was also shown to work in E. coli by the 2010 USU iGEM team . The restriction sites were added to allow for modularity in the composite part K906103. Spacers between the restriction sites were added to prevent a decrease in cutting efficiency near the end of the linearized DNA (A phenomena noted on New England Biolab???s page: http://www.neb.com/nebecomm/tech_reference/restriction_enzymes/cleavage_linearized_vector.asp#.UGzuRvl25go). Two restriction sites were added to allow for easy ligation of parts. Instead of requiring restriction sites with identical overhangs, the user can synthesize complementary primers with both required restriction sites. The user can then cut the primer with the same endonucleases as the DNA and, using the primer dimer as a ???linker,??? the DNA can be easily ligated together. In this way, the order of the genes may be easily interchanged so that future teams may be able to characterize the change in production caused by reordering the genes.
false
Andrew Ng
annotation2211124
1
Spacer
range2211124
1
7
9
annotation2211125
1
SacII
range2211125
1
10
15
annotation2211123
1
MluI
range2211123
1
1
6
BBa_K906011_sequence
1
acgcgtataccgcgg
BBa_K906000_sequence
1
atgcaagtagaccccacaaaaggaatcggattagccaacacctctcttcagtttagtaatggccgcctgcatgccttgtgcgaatatgatctaccttacgtggtacggctgagtccggaagatggcgatatcagtaccgtgggtcgtatcgaaaacaatgtgtctaccaaaagtactaccgcacatcctaaaactgaccctgtgacgggagaaacctttagcttttcctacgggcccattcaaccctacgttacgtatagcagatatgattgcgacggcaaaaagagtggccccgatgttccgatattctcctttaaagaaccctctttcgtacatgactttgcaattactgagcactatgccgtgtttcctgatattcagattgtcatgaaaccagctgagattgttcggggtcggagaatgatcgggccagatttggaaaaagtcccccgtctggggctattaccgcgttatgccacctcagacagcgaaatgcgctggtttgacgtacccggttttaacatggtacacgtagtcaatgcgtgggaagaagagggaggcgaagtggtggtcattgttgccccgaatgtttcacccattgagaatgccattgatcgctttgatttgttacatgtgtccgtggagatggcgcggattgaactcaaatccggttccgtgagtcgcaccctactgtctgcggaaaacttagattttggagttattcatcggggttattctggtcgaaaaagcaggtacgcttacttgggcgtgggggatccaatgcccaaaattcgcggtgttgtgaaagtggacttcgaactggccggtcgaggggagtgtgttgtggctcggcgcgagtttggcgtcggctgtttcggaggggaacctttctttgtacccgcttccagcaagaagtcgggtggcgaagaagatgatggctatgttgtgagttacctccacgatgaaggcaagggtgaaagttcctttgtcgttatggacgcccgttcgccagaacttgaaatcttggctgaggtggtgttacccaggcgtgtcccctatgggtttcatgggttatttgtgacagaagcggaactcttgtcccaacaataa
BBa_K906010_sequence
1
cgtacgatagcgcgcaatacataaggaattataaccaa
BBa_B1002_sequence
1
cgcaaaaaaccccgcttcggcggggttttttcgc
BBa_K906008_sequence
1
atggcagcaggattatcgaccgcagttacgttcaaacccctacatcggagttttagcagctcttccactgactttagattgcgtctgcccaaaagtttatccggctttagccccagtctccggttcaaacgattctccgtttgttacgtggtcgaagaacgtcggcaaaattccccgattgagaacgacgaacgcccagaatcaaccagttccaccaatgccatcgatgcggagtatttagctcttcggctcgctgagaagttggagcgcaaaaagagcgaaaggtccacctatctcattgccgcgatgttgtcaagttttgggattacgagcatggccgtgatggccgtctactatcgcttttcgtggcaaatggaaggtggggaaattagtatgttagaaatgttcggcacttttgctcttagtgtcggtgccgccgtgggcatggagttttgggcacgttgggcccatcgggccctgtggcacgcttctttgtggaacatgcatgaatcgcaccataaaccccgcgaagggccgtttgaactaaatgacgtatttgcgatagtgaatgcgggaccagctattggtttgttatcttatggcttctttaacaaaggcctggttcctgggctgtgctttggagccggattgggcattacagtgttcggtattgcctacatgtttgtgcacgatgggttagttcataaacgatttcccgtggggcccattgctgatgtgccttatttgaggaaagtagctgcggcccatcagcttcaccataccgataagtttaatggcgttccttatggcctatttctgggacccaaagaattagaagaggtaggtggtaatgaagaactagataaagaaatctcacgccgtatcaagtcttacaaaaaggcctccggtagcgggtcctcttccagtagttaa
BBa_K906103_sequence
1
ctcttctcaacccccaaaacgccctctgtttacccatggaaaaaacgacaattacaagaaagtaaaacttatgtcatctataagcttcgtgtatattaacttcctgttacaaagctttacaaaactctcattaatcctttagactaagtttagtcagttccaatctgaacatcgacaaatacataaggaattataaccatatgcaagtagaccccacaaaaggaatcggattagccaacacctctcttcagtttagtaatggccgcctgcatgccttgtgcgaatatgatctaccttacgtggtacggctgagtccggaagatggcgatatcagtaccgtgggtcgtatcgaaaacaatgtgtctaccaaaagtactaccgcacatcctaaaactgaccctgtgacgggagaaacctttagcttttcctacgggcccattcaaccctacgttacgtatagcagatatgattgcgacggcaaaaagagtggccccgatgttccgatattctcctttaaagaaccctctttcgtacatgactttgcaattactgagcactatgccgtgtttcctgatattcagattgtcatgaaaccagctgagattgttcggggtcggagaatgatcgggccagatttggaaaaagtcccccgtctggggctattaccgcgttatgccacctcagacagcgaaatgcgctggtttgacgtacccggttttaacatggtacacgtagtcaatgcgtgggaagaagagggaggcgaagtggtggtcattgttgccccgaatgtttcacccattgagaatgccattgatcgctttgatttgttacatgtgtccgtggagatggcgcggattgaactcaaatccggttccgtgagtcgcaccctactgtctgcggaaaacttagattttggagttattcatcggggttattctggtcgaaaaagcaggtacgcttacttgggcgtgggggatccaatgcccaaaattcgcggtgttgtgaaagtggacttcgaactggccggtcgaggggagtgtgttgtggctcggcgcgagtttggcgtcggctgtttcggaggggaacctttctttgtacccgcttccagcaagaagtcgggtggcgaagaagatgatggctatgttgtgagttacctccacgatgaaggcaagggtgaaagttcctttgtcgttatggacgcccgttcgccagaacttgaaatcttggctgaggtggtgttacccaggcgtgtcccctatgggtttcatgggttatttgtgacagaagcggaactcttgtcccaacaataatgatcaatacttaagaatacataaggaattataaccaaatgctgaacggaaacaaatgccacatcttactattgccatgtcccgctcaaggtcatattaatccaattttgcaatttgggaagcgtctggcttcccataacctgttaacgaccttagtgaatacccgatttttgagcaatagtacaaaatccgaaccagggcctgtgaatatccaatgtatttcagacggatttgacccgggaggcatgaatgcggctcccagtcggcgagcgtacttcgataggccgcagtctcggtccggccagaaacatgtgggcttgattgaatccctacgtagcagaggtcgtcccggtgcctgctttgggcttcggccggtgccattgtgggcaatgaatgtagccgaacgctctggactccgctcggtagcgtttttcactcaaccctgtgccgtcgacaccatttaccggcacgtctgggaagggcggattaaagtgcctgtcgctgagcccgtccggctgccgggcttgccccctttggaaccgtctgatctaccctgtgttcgcaacggttttggacgtgtcgtgaatcctgatttgttgcccttgcgcgtaaaccagcataagaacttggataaagccgatatgatgggacgcaacagcatttatgaattagaagccgatctgttagatgggagtaggttacccctgccggtgaaatccattggccccaccgttcctagtacctacctagataatcgtatacctagcgattcccattacggttttaacctctatacacccgacactaccccctatctcgattggttagattccaaagcacctaatagtgtgatttatgttagttttggttccttatcctcactgagtcccgatcaaactaatgaaatcgccagcggccttattgctaccaataagagctttatctgggtagtgcgcacgtccgagttagccaagttacccgccaatttcacccaagagaatgcaagtcgtggcctcgttgtgacctggtgtgaccaactcgatcttcttgcccatgtggccacgggctgttttgttactcactgtggttggaactcgacaatggaaggggttgctctgggggtgcccatggttggggttccccaatggagcgatcagccaatgaatgccaaatatgttgaagatgtgtggaaagtaggcgtgcgggcgaaaacttatggtaaagactttgtgaggggcgaagagtttaaacgatgcgttgaggaagtaatggacggggaacgctcaggcaagatcagagaaaatgctgcgcggtggtgcaaactagccaaagactctgtgtctgaaggtggtagtagtgacaagtgtattaaggagttcattcaccagtgttgcaatgattctaaaatctccctcgtctaacgtacgatagcgcgcaatacataaggaattataaccaaatggcagcaggattatcgaccgcagttacgttcaaacccctacatcggagttttagcagctcttccactgactttagattgcgtctgcccaaaagtttatccggctttagccccagtctccggttcaaacgattctccgtttgttacgtggtcgaagaacgtcggcaaaattccccgattgagaacgacgaacgcccagaatcaaccagttccaccaatgccatcgatgcggagtatttagctcttcggctcgctgagaagttggagcgcaaaaagagcgaaaggtccacctatctcattgccgcgatgttgtcaagttttgggattacgagcatggccgtgatggccgtctactatcgcttttcgtggcaaatggaaggtggggaaattagtatgttagaaatgttcggcacttttgctcttagtgtcggtgccgccgtgggcatggagttttgggcacgttgggcccatcgggccctgtggcacgcttctttgtggaacatgcatgaatcgcaccataaaccccgcgaagggccgtttgaactaaatgacgtatttgcgatagtgaatgcgggaccagctattggtttgttatcttatggcttctttaacaaaggcctggttcctgggctgtgctttggagccggattgggcattacagtgttcggtattgcctacatgtttgtgcacgatgggttagttcataaacgatttcccgtggggcccattgctgatgtgccttatttgaggaaagtagctgcggcccatcagcttcaccataccgataagtttaatggcgttccttatggcctatttctgggacccaaagaattagaagaggtaggtggtaatgaagaactagataaagaaatctcacgccgtatcaagtcttacaaaaaggcctccggtagcgggtcctcttccagtagttaaacgcgtataccgcggcgcaaaaaaccccgcttcggcggggttttttcgc
BBa_K906009_sequence
1
tgatcaatacttaagaatacataaggaattataaccaa
BBa_K906006_sequence
1
ctcttctcaacccccaaaacgccctctgtttacccatggaaaaaacgacaattacaagaaagtaaaacttatgtcatctataagcttcgtgtatattaacttcctgttacaaagctttacaaaactctcattaatcctttagactaagtttagtcagttccaatctgaacatcgacaaatacataaggaattataaccat
BBa_K906002_sequence
1
atgctgaacggaaacaaatgccacatcttactattgccatgtcccgctcaaggtcatattaatccaattttgcaatttgggaagcgtctggcttcccataacctgttaacgaccttagtgaatacccgatttttgagcaatagtacaaaatccgaaccagggcctgtgaatatccaatgtatttcagacggatttgacccgggaggcatgaatgcggctcccagtcggcgagcgtacttcgataggccgcagtctcggtccggccagaaacatgtgggcttgattgaatccctacgtagcagaggtcgtcccggtgcctgctttgggcttcggccggtgccattgtgggcaatgaatgtagccgaacgctctggactccgctcggtagcgtttttcactcaaccctgtgccgtcgacaccatttaccggcacgtctgggaagggcggattaaagtgcctgtcgctgagcccgtccggctgccgggcttgccccctttggaaccgtctgatctaccctgtgttcgcaacggttttggacgtgtcgtgaatcctgatttgttgcccttgcgcgtaaaccagcataagaacttggataaagccgatatgatgggacgcaacagcatttatgaattagaagccgatctgttagatgggagtaggttacccctgccggtgaaatccattggccccaccgttcctagtacctacctagataatcgtatacctagcgattcccattacggttttaacctctatacacccgacactaccccctatctcgattggttagattccaaagcacctaatagtgtgatttatgttagttttggttccttatcctcactgagtcccgatcaaactaatgaaatcgccagcggccttattgctaccaataagagctttatctgggtagtgcgcacgtccgagttagccaagttacccgccaatttcacccaagagaatgcaagtcgtggcctcgttgtgacctggtgtgaccaactcgatcttcttgcccatgtggccacgggctgttttgttactcactgtggttggaactcgacaatggaaggggttgctctgggggtgcccatggttggggttccccaatggagcgatcagccaatgaatgccaaatatgttgaagatgtgtggaaagtaggcgtgcgggcgaaaacttatggtaaagactttgtgaggggcgaagagtttaaacgatgcgttgaggaagtaatggacggggaacgctcaggcaagatcagagaaaatgctgcgcggtggtgcaaactagccaaagactctgtgtctgaaggtggtagtagtgacaagtgtattaaggagttcattcaccagtgttgcaatgattctaaaatctccctcgtctaa
igem2sbol
1
iGEM to SBOL conversion
Conversion of the iGEM parts registry to SBOL2.1
James Alastair McLaughlin
Chris J. Myers
2017-03-06T15:00:00.000Z