Bacillus subtilis Collectionbsu_collection Version 1 (Collection)This collection includes information about promoters, operators, CDSs and proteins from Bacillus subtilis. Functional interactions such as transcriptional activation and repression, protein production and various protein-protein interactions are also included.
BBa_K1114400BBa_K1114400 Version 1 (Component)This is a MoClo level 0 destination vector.
BBa_K1033204BBa_K1033204 Version 1 (Component)pSBLb4E15 E. coli and lactobacilli shuttle vector with erythromycin resistance
BBa_K563053BBa_K563053 Version 1 (Component)vector pYE, designed for inducible expression of recombinant proteins in S.cerevisivae.
BBa_K802003BBa_K802003 Version 1 (Component)Shuttle vector for <i> E. coli</i> and <i>B. subtilis</i>
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.