BBa_K549004BBa_K549004 Version 1 (Component)LacI promotor fused with the iron dependent regulator fur
BBa_J47053BBa_J47053 Version 1 (Component)Constitutive device (medium transcription) for lacI repressor, strong RBS
BBa_K132016BBa_K132016 Version 1 (Component)luxI+KanR-LVA+LacI+PL+KanR-LVA+aiiA+terminator
pCMV-ECFP-BBa_I763023 Version 1 (Component)LacI coding device with ECFP as a reporter regulated by pCMV
BBa_K079051BBa_K079051 Version 1 (Component)LacI repressor and GFP reporter proteins controlled by the J23118 promoter and Lac 1 operator
BBa_K1520509BBa_K1520509 Version 1 (Component)PgolTS-golS-PgolB-rbs-tetR-Ter-PtetO-rbs-rfp-Ter-Plac-rbs-tetR-Ter-Pcons2-rbs-lacI-Ter
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.