BBa_K831011BBa_K831011 Version 1 (Component)istR (inhibitor of SOS-induced toxicity by RNA) is small ncRNA of Escherichia coli K12
BBa_K831012BBa_K831012 Version 1 (Component)istR (inhibitor of SOS-induced toxicity by RNA) is small ncRNA of Escherichia coli K12
BBa_K584011BBa_K584011 Version 1 (Component)Lac-Lux hybrid promotor + CrtEBI + CI repressor + INP
BBa_K611017BBa_K611017 Version 1 (Component)cI Lambda Repressor and Promoter Wild Type Control
BBa_K892999BBa_K892999 Version 1 (Component)red light responsive inverter driving luciferase
BBa_K1412088BBa_K1412088 Version 1 (Component)A combination of theophylline aptamer and taRNA that can response theophylline to regulate circuit
BBa_K133175BBa_K133175 Version 1 (Component)CMV-SS-gyrEC
BBa_K133172BBa_K133172 Version 1 (Component)CMV-SS-gyrHP
BBa_I759033BBa_I759033 Version 1 (Component)cis1-repressed, tet-regulated YFP
BBa_I759045BBa_I759045 Version 1 (Component)cis7-repressed, tet-regulated YFP
BBa_I759043BBa_I759043 Version 1 (Component)cis6-repressed, tet-regulated YFP
BBa_I759037BBa_I759037 Version 1 (Component)cis3-repressed, tet-regulated YFP
BBa_I759047BBa_I759047 Version 1 (Component)cis8-repressed, tet-regulated YFP
BBa_I759041BBa_I759041 Version 1 (Component)cis5-repressed, tet-regulated YFP
BBa_I759035BBa_I759035 Version 1 (Component)cis2-repressed, tet-regulated YFP
BBa_K327015BBa_K327015 Version 1 (Component)Lux activated, C1lam repressed switch
BBa_K892001BBa_K892001 Version 1 (Component)red light responsive reporter driving red light luciferase
BBa_K395102BBa_K395102 Version 1 (Component)GFP reporter repressed by LuxR and 3OC6HSL (K395005:K121013)
BBa_K395103BBa_K395103 Version 1 (Component)GFP reporter repressed by LuxR and 3OC6HSL (K395006:K121013)
BBa_K079051BBa_K079051 Version 1 (Component)LacI repressor and GFP reporter proteins controlled by the J23118 promoter and Lac 1 operator
BBa_K133023BBa_K133023 Version 1 (Component)CMV-ss-CF213-multiHP-CF215-RGD-Histop (term)
Bacillus subtilis Collectionbsu_collection Version 1 (Collection)This collection includes information about promoters, operators, CDSs and proteins from Bacillus subtilis. Functional interactions such as transcriptional activation and repression, protein production and various protein-protein interactions are also included.
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.