Sequence Search | Advanced Search | SPARQL
Showing 2051 - 2063 of 2063 result(s)
Previous 37 38 39 40 41 42



Public
BBa_K209000
BBa_K209000 Version 1 (Component)
cAR1 (Dictyostelium discoideum), no STOP
Public
BBa_K1154006
BBa_K1154006 Version 1 (Component)
Mating pheromone-induced IGPD and constitutive LDH expression in yeast
Public
BBa_J36852
BBa_J36852 Version 1 (Component)
Streptavidin, single-chain dimer (no start codon)
Public
BBa_M11402
BBa_M11402 Version 1 (Component)
5' UTR and RBS of psbA2 gene in Synechocystis sp. PCC 6803
Public
BBa_K2020051
BBa_K2020051 Version 1 (Component)
wild type tyrosyl synthetase for use in E.coli with amber anticodon and Y32G
Public
BBa_K2123114
BBa_K2123114 Version 1 (Component)
Stationary phase promoter in tandem (3 repetition) with downstream mer operator + RFP (K081014)
Public
BBa_K1051356
BBa_K1051356 Version 1 (Component)
K1051301(clb2 promoter) + K1051053(K1051001 (non stop codon ECFP + K1051006 (Stop codon + TBY-1 term
Public
PrtDEF
BBa_K258007 Version 1 (Component)
Export of recombinant proteins in Escherichia coli using ABC transporter of Erwinia chrysanthemi
Public
BBa_K2123116
BBa_K2123116 Version 1 (Component)
Universal promoter for both phase of growth in tandem with downstram mer operator + RFP (K081014)
Public
SBOLDesigner CAD Tool
SBOLDesigner Version 3.1 (Agent)
SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are the ability to add variant collections to combinatorial derivations, enumerating those collections, and the ability to view sequence features hierarchically. There are also some small changes to the way that preferences work in regards to saving a design with incomplete sequences.
Public
SEGA
SEGA_collection Version 1 (Collection)
In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
Public
SBOLDesigner CAD Tool
SBOLDesigner Version 3.0 (Agent)
SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are SynBioHub integration, local repositories, importing of parts/sequences from existing files, import and export of GenBank and FASTA files, extended role ontology support, the ability to partially open designs with multiple root ComponentDefinitions, backward compatibility with SBOL 1.1, and versioning.
Public
Intein_assisted_Bisection_Mapping
Intein_assisted_Bisection_Mapping_collection Version 1 (Collection)
Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.
Showing 2051 - 2063 of 2063 result(s)
Previous 37 38 39 40 41 42