BBa_K199071BBa_K199071 Version 1 (Component)I13453:K199014: Pbad promomtor with the suppressor tRNA of the codon AGGAC
BBa_J22121BBa_J22121 Version 1 (Component)Lac Y gene under the rec A(SOS) promoter in plasmid pSB2K3
BBa_K371054BBa_K371054 Version 1 (Component)MPF(meta-prefix)+[GFP+10*GS+A] fusion protein+MSF(meta-suffix))
BBa_K1412088BBa_K1412088 Version 1 (Component)A combination of theophylline aptamer and taRNA that can response theophylline to regulate circuit
BBa_K1778002BBa_K1778002 Version 1 (Component)TRE-CYC1TATA is a recombinant promoter, which is constructed in order to make the Tet-on system func
Intein_assisted_Bisection_MappingIntein_assisted_Bisection_Mapping_collection Version 1 (Collection)Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.