Sequence Search | Advanced Search | SPARQL
Showing 1201 - 1205 of 1205 result(s)
Previous 20 21 22 23 24 25



Public
BBa_K792000
BBa_K792000 Version 1 (Component)
Yeast exportable His-rich peptide w/enhanced import (nonStd)
Public
BBa_K371054
BBa_K371054 Version 1 (Component)
MPF(meta-prefix)+[GFP+10*GS+A] fusion protein+MSF(meta-suffix))
Public
BBa_K542011
BBa_K542011 Version 1 (Component)
Catechol 2,3-dioxygenase with C-term Arg-tag (xylE-Arg)
Public
BBa_K1154006
BBa_K1154006 Version 1 (Component)
Mating pheromone-induced IGPD and constitutive LDH expression in yeast
Public
SEGA
SEGA_collection Version 1 (Collection)
In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
Showing 1201 - 1205 of 1205 result(s)
Previous 20 21 22 23 24 25