BBa_K137033BBa_K137033 Version 1 (Component)Device with GFP with (AC)21 repeat after start codon
BBa_K1616003BBa_K1616003 Version 1 (Component)VVD link to YC155 (YFP Cter split)
BBa_K1616004BBa_K1616004 Version 1 (Component)VVD linked to YN155 (YFP Nter split)
BBa_I12026BBa_I12026 Version 1 (Component)Test of BBa_R0011 (LacI regulated) using YFP
BBa_I15024BBa_I15024 Version 1 (Component)Tet-repressible polycistronic CFP/YFP under B0034
BBa_K1352003BBa_K1352003 Version 1 (Component)Ice Nucleation Protein with YFP and His-tag
BBa_J04431BBa_J04431 Version 1 (Component)GFP Coding Device with promoter, RBS, GFP with LVA tag, and Terminator
BBa_J70459BBa_J70459 Version 1 (Component)yfp RBS, {0,5;15,10} family member - B0031 simulator (reverse oligo)
BBa_K2123117BBa_K2123117 Version 1 (Component)Novel RFP device regulated by mercury: MerR (regulatory protein) + Stationary phase with mer operato
Adapter BiBBa_K1807015 Version 1 (Component)This device allows for the IPTG-inducible expression of lacZα peptide which in the presence of
iGEM Parts Registryigem_collection Version 1 (Collection)The iGEM Registry is a growing collection of genetic parts that can be mixed and matched to build synthetic biology devices and systems. As part of the synthetic biology community's efforts to make biology easier to engineer, it provides a source of genetic parts to iGEM teams and academic labs.
Intein_assisted_Bisection_MappingIntein_assisted_Bisection_Mapping_collection Version 1 (Collection)Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.