BBa_K2082001BBa_K2082001 Version 1 (Component)Nanobody: Constant regions (insert variable regions to create your defined Nanobody or library)
BBa_K415008BBa_K415008 Version 1 (Component)pLux/cI-OR : RBS-mCherry : Term : p(lac) IQ : luxR : Term : pLux
BBa_K415009BBa_K415009 Version 1 (Component)pLux/cI-OR : RBS-mCherry : Term : P(tetR) : RBS-luxR : Term : pLux
BBa_K2123115BBa_K2123115 Version 1 (Component)Universal promoter (Tac + JK26) for both growth phase with downstream mer operator + K081014
BBa_K1113411BBa_K1113411 Version 1 (Component)Targeting sequence for the delivery of the LacZ gene to the Carboxysome
BBa_K2144011BBa_K2144011 Version 1 (Component)Coding sequence for Nuclease with His6 and LPXTG tag regulated by T7-promoter
BBa_I20292BBa_I20292 Version 1 (Component)There is no limit to what a man can do or where he can go if...
BBa_K2123116BBa_K2123116 Version 1 (Component)Universal promoter for both phase of growth in tandem with downstram mer operator + RFP (K081014)
BBa_J85010BBa_J85010 Version 1 (Component)PLux/cI-OR Promoter
BBa_I733007BBa_I733007 Version 1 (Component)Weight cells either turn blue or die in response to both inputs and HSL level
BBa_I741109BBa_I741109 Version 1 (Component)Lambda Or operator region
BBa_K549004BBa_K549004 Version 1 (Component)LacI promotor fused with the iron dependent regulator fur
BBa_K228013BBa_K228013 Version 1 (Component)(pSal PO) OR Gate - GFP
BBa_K415011BBa_K415011 Version 1 (Component)PtetR : RBS : LuxR : Term : PluxR/cI-OR : RBS : mCherry : Term : Plux/cI-OR : RBS : LuxI
BBa_K1341011BBa_K1341011 Version 1 (Component)OR LOGIC GATE IN Graph Theory (GFP OUTPUT DEVICE)
BBa_K415005BBa_K415005 Version 1 (Component)pLux/cI-OR : RBS-mCherry : Term : p(tetR) : RBS-luxR : Term
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.