Sequence Search | Advanced Search | SPARQL
Showing 2301 - 2312 of 2312 result(s)
Previous 42 43 44 45 46 47



Public
BBa_K2144011
BBa_K2144011 Version 1 (Component)
Coding sequence for Nuclease with His6 and LPXTG tag regulated by T7-promoter
Public
BBa_J70604
BBa_J70604 Version 1 (Component)
J70589 cut with BsaXI and with rbs, 6his inserts (J70559-f1i,f2i,r2i,r2i) added
Public
BBa_K2150010
BBa_K2150010 Version 1 (Component)
This part consists of a gene encoding toxin 134 with a LacI gene, a Ptac promoter included
Public
BBa_K737001
BBa_K737001 Version 1 (Component)
We got this part from the mutant of E.coli strain K12, DH5α,using PCR with the primers we desig
Public
BBa_K1657006
BBa_K1657006 Version 1 (Component)
It is called GAB. It have the resistance to glyphosate and glufosinate
Public
BBa_K831011
BBa_K831011 Version 1 (Component)
istR (inhibitor of SOS-induced toxicity by RNA) is small ncRNA of Escherichia coli K12
Public
BBa_K831012
BBa_K831012 Version 1 (Component)
istR (inhibitor of SOS-induced toxicity by RNA) is small ncRNA of Escherichia coli K12
Public
BBa_K1778005
BBa_K1778005 Version 1 (Component)
eGFP:enhanced Green Fluorescent Protein. It???s the mutant of GFP. It is widely used as report gene
Public
iGEM Parts Registry
igem_collection Version 1 (Collection)
The iGEM Registry is a growing collection of genetic parts that can be mixed and matched to build synthetic biology devices and systems. As part of the synthetic biology community's efforts to make biology easier to engineer, it provides a source of genetic parts to iGEM teams and academic labs.
Public
SBOLDesigner CAD Tool
SBOLDesigner Version 3.1 (Agent)
SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are the ability to add variant collections to combinatorial derivations, enumerating those collections, and the ability to view sequence features hierarchically. There are also some small changes to the way that preferences work in regards to saving a design with incomplete sequences.
Public
SBOLDesigner CAD Tool
SBOLDesigner Version 3.0 (Agent)
SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are SynBioHub integration, local repositories, importing of parts/sequences from existing files, import and export of GenBank and FASTA files, extended role ontology support, the ability to partially open designs with multiple root ComponentDefinitions, backward compatibility with SBOL 1.1, and versioning.
Public
SEGA
SEGA_collection Version 1 (Collection)
In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
Showing 2301 - 2312 of 2312 result(s)
Previous 42 43 44 45 46 47