BBa_K2044022BBa_K2044022 Version 1 (Component)Based on our project, it represents Site NO.8 in the map.
BBa_K2044019BBa_K2044019 Version 1 (Component)Based on our project, it represents Site NO.5 in the map.
BBa_K180005BBa_K180005 Version 1 (Component)GoL - Primary plasmid (part 1)/RPS - Paper primary plasmid (part 1) [LuxR generator]
BBa_I731014BBa_I731014 Version 1 (Component)The luxR based receiver, F2620 (formerly I13270), controls the production of mCherry
BBa_K987000BBa_K987000 Version 1 (Component)This part is a coding part that produces Vip3Ca3, a protein that can deals with different forms of p
BBa_K1638035BBa_K1638035 Version 1 (Component)hTrx-based scaffold fused to T18 through intein and a flexible linker
BBa_M50053BBa_M50053 Version 1 (Component)FRET-based glucose sensor using a glucose binding protein, mRuby3 and cometGFP
BBa_M1722BBa_M1722 Version 1 (Component)Part is based on theory. Consists of pBAD promoter, hepcidin and GFP
BBa_K187254BBa_K187254 Version 1 (Component)folD, ORF, forward primer
BBa_K750008BBa_K750008 Version 1 (Component)Quorum sensing system based on LuxI and LuxR to control the expression of parts behind
BBa_K185033BBa_K185033 Version 1 (Component)An inverter of a special lactose operon system based on J23110-rbs34-lacI-dter-plac-rbs31
BBa_K2044001BBa_K2044001 Version 1 (Component)Based on our project, <2-4-8> is a feasible pathway from Site No. 2 to Site No. 8
BBa_K2044000BBa_K2044000 Version 1 (Component)Based on our project, <2-6-8> is the optimal pathway scheme from Site No. 2 to Site No. 8
BBa_K2044010BBa_K2044010 Version 1 (Component)Based on our project, <5,7> is the direct pathway from Site No.5to Site No.7 in the map we design.
BBa_K371054BBa_K371054 Version 1 (Component)MPF(meta-prefix)+[GFP+10*GS+A] fusion protein+MSF(meta-suffix))
BBa_K2044006BBa_K2044006 Version 1 (Component)Based on our project,<3,6> is the direct pathway from Site No.3 to Site No.6 in the map we design.
BBa_K2044004BBa_K2044004 Version 1 (Component)Based on our project, <2,4> is the direct pathway from Site No.2 to Site No.4 in the map we design.
BBa_K2044009BBa_K2044009 Version 1 (Component)Based on our project, <4,8> is the direct pathway from Site No.4 to Site No.8 in the map we design.
BBa_K2044014BBa_K2044014 Version 1 (Component)Based on our project, <1,4> is the direct pathway from Site No.1 to Site No.4 in the map we design.
BBa_K2044007BBa_K2044007 Version 1 (Component)Based on our project, <4,5> is the direct pathway from Site No.4 to Site No.5 in the map we design.
BBa_K2044013BBa_K2044013 Version 1 (Component)Based on our project,<7,8> is the direct pathway from Site No.7 to Site No.8 in the map we design.
BBa_K2044008BBa_K2044008 Version 1 (Component)Based on our project, <4,6> is the direct pathway from Site No.4 to Site No.6 in the map we design.
BBa_K2044003BBa_K2044003 Version 1 (Component)Based on our project, <2,3> is the direct pathway from Site No.2 to Site No.3 in the map we design.
BBa_K2044002BBa_K2044002 Version 1 (Component)Based on our project, <2,1> is the direct pathway from Site No.2 to Site No.1 in the map we design.
BBa_K2044005BBa_K2044005 Version 1 (Component)Based on our project, <2,6> is the direct pathway from Site No.2 to Site No.6 in the map we design.
BBa_K2044012BBa_K2044012 Version 1 (Component)Based on our project, <6,8> is the direct pathway from Site No.6 to Site No.8 in the map we design.
BBa_K2044011BBa_K2044011 Version 1 (Component)Based on our project,<6,4> is the direct pathway from Site No.6 to Site No.4 in the map we design.
BBa_K310012BBa_K310012 Version 1 (Component)Composite part of golS with RBS and terminator.
PchiP-lacZBBa_K564002 Version 1 (Component)Chitoporin fused with lacZ - target for sRNA based regulation
BBa_K1520509BBa_K1520509 Version 1 (Component)PgolTS-golS-PgolB-rbs-tetR-Ter-PtetO-rbs-rfp-Ter-Plac-rbs-tetR-Ter-Pcons2-rbs-lacI-Ter
Intein_assisted_Bisection_MappingIntein_assisted_Bisection_Mapping_collection Version 1 (Collection)Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.