Plac-LacY-BBa_I763032 Version 1 (Component)LacY coding device switched on by IPTG with GFP as a reporter
BBa_M1722BBa_M1722 Version 1 (Component)Part is based on theory. Consists of pBAD promoter, hepcidin and GFP
BBa_K157010BBa_K157010 Version 1 (Component)glycine-serine linker fused to B-cell receptor transmembrane region; displays protein on cell surfac
BBa_K142027BBa_K142027 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (T276F) and TetR expression cassette
BBa_K165091BBa_K165091 Version 1 (Component)Zif268-HIV bs + LexA bs + mCYC + Zif268-HIV repressor (mCherryx2 tagged) on pRS306
BBa_K142029BBa_K142029 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (R197A, T276F)/TetR expression cassette
BBa_K142028BBa_K142028 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (R197A, T276A)/TetR expression cassette
BBa_K142025BBa_K142025 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (R197F) and TetR expression cassette
BBa_K142026BBa_K142026 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (T276A) and TetR expression cassette
BBa_K142031BBa_K142031 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (R197F, T276F)/TetR expression cassette
BBa_K142024BBa_K142024 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (R197A) and TetR expression cassette
BBa_K142030BBa_K142030 Version 1 (Component)IPTG-on tetracycline-off pulse generator with LacI mutant (R197F, T276A)/TetR expression cassette
BBa_K1431301BBa_K1431301 Version 1 (Component)TRE-3G promoter+SV40 PolyA, an ideal controller of mammalian gene expression with Tet-On 3G protein
BBa_K750008BBa_K750008 Version 1 (Component)Quorum sensing system based on LuxI and LuxR to control the expression of parts behind
DigitalizerDigitalizer_collection Version 1 (Collection)A genetic device to digitalize gene expression into a sharp on/off signal.
BBa_K185033BBa_K185033 Version 1 (Component)An inverter of a special lactose operon system based on J23110-rbs34-lacI-dter-plac-rbs31
BBa_K1778002BBa_K1778002 Version 1 (Component)TRE-CYC1TATA is a recombinant promoter, which is constructed in order to make the Tet-on system func
BBa_J04795BBa_J04795 Version 1 (Component)Riboswitch designed to turn "ON" a protein
SBOLDesigner CAD ToolSBOLDesigner Version 3.1 (Agent)SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are the ability to add variant collections to combinatorial derivations, enumerating those collections, and the ability to view sequence features hierarchically. There are also some small changes to the way that preferences work in regards to saving a design with incomplete sequences.
SBOLDesigner CAD ToolSBOLDesigner Version 3.0 (Agent)SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are SynBioHub integration, local repositories, importing of parts/sequences from existing files, import and export of GenBank and FASTA files, extended role ontology support, the ability to partially open designs with multiple root ComponentDefinitions, backward compatibility with SBOL 1.1, and versioning.
BBa_I763003BBa_I763003 Version 1 (Component)GFP coding device switched on by IPTG
placIQ RBSBBa_K193604 Version 1 (Component)GFP behind a constitutive promoter (placIQ) on pSB4A5
placIQ RBSBBa_K193601 Version 1 (Component)Constitutive Promoter (placIQ ) + RBS + melA on Low copy vector(pSB6A1)
BBa_K165100BBa_K165100 Version 1 (Component)Gli1 bs + LexA bs + mCYC + LexA repressor (mCherryx2 tagged) on pRS304*
BBa_K165101BBa_K165101 Version 1 (Component)Zif268-HIV bs + LexA bs + mCYC + Zif268-HIV repressor (mCherryx2 tagged) on pRS304*
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
Intein_assisted_Bisection_MappingIntein_assisted_Bisection_Mapping_collection Version 1 (Collection)Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.