BBa_K1942000BBa_K1942000 Version 1 (Component)A shRNA corresponding DNA sequence for KRAS which could silence the gene
BBa_K2016006BBa_K2016006 Version 1 (Component)Superfolder GFP under control or medium constitutive promoter and RyhB siRNA domain
BBa_K415001BBa_K415001 Version 1 (Component)P_const(low/med) : LuxR : Term : pLux/CI-OR : RBS-mCherry : Term
BBa_K750115BBa_K750115 Version 1 (Component)pBADcIT-PtetcIT-PcIGLT: arabinose or atc->cI protein->reduction of gfp(lva)
BBa_K726009BBa_K726009 Version 1 (Component)T7 driven lac operated inducer for the rhl quorum-sensing system
BBa_I718001BBa_I718001 Version 1 (Component)ech My new test generator part Feruloyl CoA hydratase for vanilin
BBa_K648130BBa_K648130 Version 1 (Component)Pr of Or tester with cI repressor with very weak RBS
BBa_K648129BBa_K648129 Version 1 (Component)Pr of Or tester with cI repressor with slightly weak RBS
BBa_K750112BBa_K750112 Version 1 (Component)GFP(lva) expression system controlled by cI or atc(RBS strength:1.0)
BBa_K2082001BBa_K2082001 Version 1 (Component)Nanobody: Constant regions (insert variable regions to create your defined Nanobody or library)
BBa_K2020051BBa_K2020051 Version 1 (Component)wild type tyrosyl synthetase for use in E.coli with amber anticodon and Y32G
BBa_K415008BBa_K415008 Version 1 (Component)pLux/cI-OR : RBS-mCherry : Term : p(lac) IQ : luxR : Term : pLux
BBa_K415009BBa_K415009 Version 1 (Component)pLux/cI-OR : RBS-mCherry : Term : P(tetR) : RBS-luxR : Term : pLux
BBa_K2123115BBa_K2123115 Version 1 (Component)Universal promoter (Tac + JK26) for both growth phase with downstream mer operator + K081014
BBa_K1113411BBa_K1113411 Version 1 (Component)Targeting sequence for the delivery of the LacZ gene to the Carboxysome
BBa_K2144011BBa_K2144011 Version 1 (Component)Coding sequence for Nuclease with His6 and LPXTG tag regulated by T7-promoter
BBa_I20292BBa_I20292 Version 1 (Component)There is no limit to what a man can do or where he can go if...
BBa_K2123116BBa_K2123116 Version 1 (Component)Universal promoter for both phase of growth in tandem with downstram mer operator + RFP (K081014)
iGEM Parts Registryigem_collection Version 1 (Collection)The iGEM Registry is a growing collection of genetic parts that can be mixed and matched to build synthetic biology devices and systems. As part of the synthetic biology community's efforts to make biology easier to engineer, it provides a source of genetic parts to iGEM teams and academic labs.
BBa_J85010BBa_J85010 Version 1 (Component)PLux/cI-OR Promoter
BBa_I733007BBa_I733007 Version 1 (Component)Weight cells either turn blue or die in response to both inputs and HSL level
BBa_I741109BBa_I741109 Version 1 (Component)Lambda Or operator region
BBa_K549004BBa_K549004 Version 1 (Component)LacI promotor fused with the iron dependent regulator fur
BBa_K228013BBa_K228013 Version 1 (Component)(pSal PO) OR Gate - GFP
BBa_K415011BBa_K415011 Version 1 (Component)PtetR : RBS : LuxR : Term : PluxR/cI-OR : RBS : mCherry : Term : Plux/cI-OR : RBS : LuxI
BBa_K415005BBa_K415005 Version 1 (Component)pLux/cI-OR : RBS-mCherry : Term : p(tetR) : RBS-luxR : Term
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.