BBa_K1510105BBa_K1510105 Version 1 (Component)sRNA targets histidine kinase 11 mRNA in S.mutans
BBa_J04795BBa_J04795 Version 1 (Component)Riboswitch designed to turn "ON" a protein
BBa_J58008BBa_J58008 Version 1 (Component)Periplasmic binding protein that docks a vanillin molecule
BBa_K187005BBa_K187005 Version 1 (Component)Sigma 70 25% promoter in pAB, BioBytes plasmid
BBa_K187007BBa_K187007 Version 1 (Component)Sigma 70 75% promoter in pAB, Biobytes plasmid
BBa_K187014BBa_K187014 Version 1 (Component)Sigma 70 100% promoter in pBA, Biobytes plasimd
BBa_K187006BBa_K187006 Version 1 (Component)Sigma 70 50% promoter in pAB, Biobytes plasmid
BBa_K187003BBa_K187003 Version 1 (Component)Sigma 70 1% promoter in pAB BioBytes plasmid
BBa_K187004BBa_K187004 Version 1 (Component)Sigma 70 10% promoter in pAB, Biobytes plasmid
BBa_I733004BBa_I733004 Version 1 (Component)Produce LacZ alpha in response to AHL
BBa_K783043BBa_K783043 Version 1 (Component)This is a MoClo converted version of BBa_J23102
BBa_K783039BBa_K783039 Version 1 (Component)This is a MoClo converted version of BBa_J23101
BBa_K783040BBa_K783040 Version 1 (Component)This is a MoClo converted version of BBa_J23110
BBa_K1413045BBa_K1413045 Version 1 (Component)A fusion of Universal Transposon Plasmid and pSB1C3
BBa_K783034BBa_K783034 Version 1 (Component)This is a MoClo converted version of BBa_J23114
BBa_K783050BBa_K783050 Version 1 (Component)This is a MoClo converted version of BBa_B0033
iGEM Parts Registryigem_collection Version 1 (Collection)The iGEM Registry is a growing collection of genetic parts that can be mixed and matched to build synthetic biology devices and systems. As part of the synthetic biology community's efforts to make biology easier to engineer, it provides a source of genetic parts to iGEM teams and academic labs.
placIQ RBSBBa_K193604 Version 1 (Component)GFP behind a constitutive promoter (placIQ) on pSB4A5
BBa_K812133BBa_K812133 Version 1 (Component)sfGFP with kozak sequence for expression in Xenopus
BBa_K209000BBa_K209000 Version 1 (Component)cAR1 (Dictyostelium discoideum), no STOP
BBa_K1405007BBa_K1405007 Version 1 (Component)A Kill Switch with "memory" time repressed by IPTG
BBa_J70516BBa_J70516 Version 1 (Component)1000gfp(J70488).E0040 no scar
BBa_J70518BBa_J70518 Version 1 (Component)100000gfp(J70494).E0040 no scar
BBa_J70517BBa_J70517 Version 1 (Component)10000gfp(J70491).E0040 no scar
BBa_J70515BBa_J70515 Version 1 (Component)100gfp(J70485).E0040 no scar
BBa_K258003BBa_K258003 Version 1 (Component)Granulysin, a T Cell Product,Kills Bacteria by Altering Membrane Permeability
BBa_J22116BBa_J22116 Version 1 (Component)Lac Y gene under the rec A(SOS) promoter
BBa_K2092004BBa_K2092004 Version 1 (Component)alcR (incl RBS), ethanol-activated transcription factor from A. nidulans
BBa_K1154006BBa_K1154006 Version 1 (Component)Mating pheromone-induced IGPD and constitutive LDH expression in yeast
pCMV-ECFP-BBa_I763023 Version 1 (Component)LacI coding device with ECFP as a reporter regulated by pCMV
Intein_assisted_Bisection_MappingIntein_assisted_Bisection_Mapping_collection Version 1 (Collection)Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.
BBa_J36852BBa_J36852 Version 1 (Component)Streptavidin, single-chain dimer (no start codon)
BBa_M11402BBa_M11402 Version 1 (Component)5' UTR and RBS of psbA2 gene in Synechocystis sp. PCC 6803
BBa_J58011BBa_J58011 Version 1 (Component)Promoter which is activated by cI and CRP, using a transcription logic function type AND
BBa_K1796201BBa_K1796201 Version 1 (Component)An unloaded sgRNA that contains BbsI cutting site, with a promoter and terminator.
BBa_K300096BBa_K300096 Version 1 (Component)Double phasin and intein separed by a flexible protein domain linker
BBa_K2020051BBa_K2020051 Version 1 (Component)wild type tyrosyl synthetase for use in E.coli with amber anticodon and Y32G
BBa_K079016BBa_K079016 Version 1 (Component)RecA promoter with GFP reporter protein on a medium copy number plasmid
BBa_K2123114BBa_K2123114 Version 1 (Component)Stationary phase promoter in tandem (3 repetition) with downstream mer operator + RFP (K081014)
BBa_K371054BBa_K371054 Version 1 (Component)MPF(meta-prefix)+[GFP+10*GS+A] fusion protein+MSF(meta-suffix))
BBa_K1412088BBa_K1412088 Version 1 (Component)A combination of theophylline aptamer and taRNA that can response theophylline to regulate circuit
BBa_K1051356BBa_K1051356 Version 1 (Component)K1051301(clb2 promoter) + K1051053(K1051001 (non stop codon ECFP + K1051006 (Stop codon + TBY-1 term
PrtDEFBBa_K258007 Version 1 (Component)Export of recombinant proteins in Escherichia coli using ABC transporter of Erwinia chrysanthemi
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
BBa_K2123116BBa_K2123116 Version 1 (Component)Universal promoter for both phase of growth in tandem with downstram mer operator + RFP (K081014)
BBa_K1942001BBa_K1942001 Version 1 (Component)This part is a short RNA sequence designed for KRAS gene silencing. It is used for down-regulating K