BBa_K1189029BBa_K1189029 Version 1 (Component)TALE-A with a his tag linked to a K coil under the control of a LacI promoter
BBa_I3423BBa_I3423 Version 1 (Component)Test: Switch response to aspartate input (I3410.E0422.I3411.E0432.I3100.I3400.I3302.I3400.I3102.I340
BBa_I3421BBa_I3421 Version 1 (Component)Test: Switch response to aspartate input (I3410.E0422.I3411.E0432.I3100.I3400.I3300.I3400.I3102.I340
BBa_I3422BBa_I3422 Version 1 (Component)Test: Switch response to aspartate input (I3410.E0422.I3411.E0432.I3100.I3400.I3301.I3400.I3102.I340
BBa_K987001BBa_K987001 Version 1 (Component)This is a composite part which has the function to invert the temperature activation by the part: BB
BBa_K323164BBa_K323164 Version 1 (Component)VioA and VioB enzymes fused with zinc fingers under pBAD promoter in pSB4K5
placIQ RBSBBa_K193601 Version 1 (Component)Constitutive Promoter (placIQ ) + RBS + melA on Low copy vector(pSB6A1)
BBa_K1334028BBa_K1334028 Version 1 (Component)IPTG activated promoter similar to R0011
BBa_K323163BBa_K323163 Version 1 (Component)VioC, VioD and VioE enzymes fused with zinc fingers under pBAD promoter in pSB4C5
BBa_K165100BBa_K165100 Version 1 (Component)Gli1 bs + LexA bs + mCYC + LexA repressor (mCherryx2 tagged) on pRS304*
Intein_assisted_Bisection_MappingIntein_assisted_Bisection_Mapping_collection Version 1 (Collection)Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.
BBa_K1616003BBa_K1616003 Version 1 (Component)VVD link to YC155 (YFP Cter split)
BBa_K1616004BBa_K1616004 Version 1 (Component)VVD linked to YN155 (YFP Nter split)
BBa_K165101BBa_K165101 Version 1 (Component)Zif268-HIV bs + LexA bs + mCYC + Zif268-HIV repressor (mCherryx2 tagged) on pRS304*
BBa_K936012BBa_K936012 Version 1 (Component)Leader sequence that brings protein to periplasm
BBa_I733004BBa_I733004 Version 1 (Component)Produce LacZ alpha in response to AHL
BBa_I758600BBa_I758600 Version 1 (Component)Screen for binding affinity of mutant cI lambda to promotor sites
BBa_K1657006BBa_K1657006 Version 1 (Component)It is called GAB. It have the resistance to glyphosate and glufosinate
BBa_K1113411BBa_K1113411 Version 1 (Component)Targeting sequence for the delivery of the LacZ gene to the Carboxysome
BBa_K1412088BBa_K1412088 Version 1 (Component)A combination of theophylline aptamer and taRNA that can response theophylline to regulate circuit
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
BBa_K541715BBa_K541715 Version 1 (Component)Multi-host vector pTG262 converted to BioBrick vector wtih LALF protein and SacB signal peptide
SBOLDesigner CAD ToolSBOLDesigner Version 3.0 (Agent)SBOLDesigner is a simple, biologist-friendly CAD software tool for creating and manipulating the sequences of genetic constructs using the Synthetic Biology Open Language (SBOL) 2 data model. Throughout the design process, SBOL Visual symbols, a system of schematic glyphs, provide standardized visualizations of individual parts. SBOLDesigner completes a workflow for users of genetic design automation tools. It combines a simple user interface with the power of the SBOL standard and serves as a launchpad for more detailed designs involving simulations and experiments. Some new features in SBOLDesigner are SynBioHub integration, local repositories, importing of parts/sequences from existing files, import and export of GenBank and FASTA files, extended role ontology support, the ability to partially open designs with multiple root ComponentDefinitions, backward compatibility with SBOL 1.1, and versioning.