Sequence Search | Advanced Search | SPARQL
Showing 3301 - 3339 of 3339 result(s)
Previous 62 63 64 65 66 67



Public
BBa_K251000
BBa_K251000 Version 1 (Component)
coding sequene for E.coli heat shock protein hsp15 (example/ european meeting)
Public
BBa_I714001
BBa_I714001 Version 1 (Component)
trwC of R388 ( relaxase or nickase of the R388 conjugative plasmid )
Public
BBa_K415002
BBa_K415002 Version 1 (Component)
P_const(high) : LuxR : Term : pLux/CI-OR : RBS-mCherry : Term
Public
xis domain
BBa_K112203 Version 1 (Component)
{< xis >} The bacteriophage lambda xis gene without start or stop codons; assembly standard 21
Public
BBa_J70559
BBa_J70559 Version 1 (Component)
N-terminal fusion test: R0010:J70558 or R0010:J70550:E0040
Public
BBa_K363002
BBa_K363002 Version 1 (Component)
A calcium dependent response element binding site for the Crz1 activator
Public
BBa_K1351040
BBa_K1351040 Version 1 (Component)
pBS0K<i>Pspac</i>, an IPTG-inducible replicative expression vector for
Public
BBa_I758600
BBa_I758600 Version 1 (Component)
Screen for binding affinity of mutant cI lambda to promotor sites
Public
BBa_K563053
BBa_K563053 Version 1 (Component)
vector pYE, designed for inducible expression of recombinant proteins in S.cerevisivae.
Public
BBa_K1440002
BBa_K1440002 Version 1 (Component)
part1 or our whole design,SV40>PTRE>EYFP>loxP>Ribozyme>SV40
Public
BBa_K802003
BBa_K802003 Version 1 (Component)
Shuttle vector for <i> E. coli</i> and <i>B. subtilis</i>
Public
BBa_K1942000
BBa_K1942000 Version 1 (Component)
A shRNA corresponding DNA sequence for KRAS which could silence the gene
Public
BBa_K2016006
BBa_K2016006 Version 1 (Component)
Superfolder GFP under control or medium constitutive promoter and RyhB siRNA domain
Public
BBa_K415001
BBa_K415001 Version 1 (Component)
P_const(low/med) : LuxR : Term : pLux/CI-OR : RBS-mCherry : Term
Public
BBa_K750115
BBa_K750115 Version 1 (Component)
pBADcIT-PtetcIT-PcIGLT: arabinose or atc->cI protein->reduction of gfp(lva)
Public
BBa_K726009
BBa_K726009 Version 1 (Component)
T7 driven lac operated inducer for the rhl quorum-sensing system
Public
BBa_I718001
BBa_I718001 Version 1 (Component)
ech My new test generator part Feruloyl CoA hydratase for vanilin
Public
BBa_K648130
BBa_K648130 Version 1 (Component)
Pr of Or tester with cI repressor with very weak RBS
Public
BBa_K648129
BBa_K648129 Version 1 (Component)
Pr of Or tester with cI repressor with slightly weak RBS
Public
BBa_K750112
BBa_K750112 Version 1 (Component)
GFP(lva) expression system controlled by cI or atc(RBS strength:1.0)
Public
BBa_K2082001
BBa_K2082001 Version 1 (Component)
Nanobody: Constant regions (insert variable regions to create your defined Nanobody or library)
Public
BBa_K2020051
BBa_K2020051 Version 1 (Component)
wild type tyrosyl synthetase for use in E.coli with amber anticodon and Y32G
Public
BBa_K415008
BBa_K415008 Version 1 (Component)
pLux/cI-OR : RBS-mCherry : Term : p(lac) IQ : luxR : Term : pLux
Public
BBa_K415009
BBa_K415009 Version 1 (Component)
pLux/cI-OR : RBS-mCherry : Term : P(tetR) : RBS-luxR : Term : pLux
Public
BBa_K2123115
BBa_K2123115 Version 1 (Component)
Universal promoter (Tac + JK26) for both growth phase with downstream mer operator + K081014
Public
BBa_K1113411
BBa_K1113411 Version 1 (Component)
Targeting sequence for the delivery of the LacZ gene to the Carboxysome
Public
BBa_K2144011
BBa_K2144011 Version 1 (Component)
Coding sequence for Nuclease with His6 and LPXTG tag regulated by T7-promoter
Public
BBa_I20292
BBa_I20292 Version 1 (Component)
There is no limit to what a man can do or where he can go if...
Public
BBa_K2123116
BBa_K2123116 Version 1 (Component)
Universal promoter for both phase of growth in tandem with downstram mer operator + RFP (K081014)
Public
BBa_J85010
BBa_J85010 Version 1 (Component)
PLux/cI-OR Promoter
Public
Adapter Bi
BBa_K1807015 Version 1 (Component)
This device allows for the IPTG-inducible expression of lacZ&#945; peptide which in the presence of
Public
Intein_assisted_Bisection_Mapping
Intein_assisted_Bisection_Mapping_collection Version 1 (Collection)
Split inteins are powerful tools for seamless ligation of synthetic split proteins. Yet, their use remains limited because the already intricate split site identification problem is often complicated by the requirement of extein junction sequences. To address this, we augmented a mini-Mu transposon-based screening approach and devised the intein-assisted bisection mapping (IBM) method. IBM robustly revealed clusters of split sites on five proteins, converting them into AND or NAND logic gates. We further showed that the use of inteins expands functional sequence space for splitting a protein. We also demonstrated the utility of our approach over rational inference of split sites from secondary structure alignment of homologous proteins. Furthermore, the intein inserted at an identified site could be engineered by the transposon again to become partially chemically inducible, and to some extent enabled post-translational tuning on host protein function. Our work offers a generalizable and systematic route towards creating split protein-intein fusions and conditional inteins for protein activity control.
Public
BBa_I733007
BBa_I733007 Version 1 (Component)
Weight cells either turn blue or die in response to both inputs and HSL level
Public
BBa_I741109
BBa_I741109 Version 1 (Component)
Lambda Or operator region
Public
BBa_K549004
BBa_K549004 Version 1 (Component)
LacI promotor fused with the iron dependent regulator fur
Public
BBa_K228013
BBa_K228013 Version 1 (Component)
(pSal PO) OR Gate - GFP
Public
BBa_K415011
BBa_K415011 Version 1 (Component)
PtetR : RBS : LuxR : Term : PluxR/cI-OR : RBS : mCherry : Term : Plux/cI-OR : RBS : LuxI
Public
BBa_K415005
BBa_K415005 Version 1 (Component)
pLux/cI-OR : RBS-mCherry : Term : p(tetR) : RBS-luxR : Term
Public
SEGA
SEGA_collection Version 1 (Collection)
In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.
Showing 3301 - 3339 of 3339 result(s)
Previous 62 63 64 65 66 67