BBa_M45102BBa_M45102 Version 1 (Component)Cobalt detection Biobrick. RFP made in presence of Cobalt. Note the receptor also works in the prese
BBa_K1172912BBa_K1172912 Version 1 (Component)Part 1 of the Biosystem TetOR alive (pRha TetR alr)
BBa_K594015BBa_K594015 Version 1 (Component)A device that can accepts the 3--O-C6-HSL and then produces lasI and EYFP
BBa_K382036BBa_K382036 Version 1 (Component)RxRhm (Retinoic Acid Receptor)
BBa_K1172914BBa_K1172914 Version 1 (Component)Part 2 of the Biosafety-System TetOR alive (TetO GFP)
BBa_K809321BBa_K809321 Version 1 (Component)GAL promoter + YFP_SPtim21 + ADH1 terminator
BBa_K809308BBa_K809308 Version 1 (Component)GAL promoter + RFP_SPzim17 + ADH1 terminator
BBa_K541715BBa_K541715 Version 1 (Component)Multi-host vector pTG262 converted to BioBrick vector wtih LALF protein and SacB signal peptide
BBa_M36745BBa_M36745 Version 1 (Component)The sensor codes for AraC, a transcription factor, which represses the operon.Arabinose induces tran
BBa_K1434002BBa_K1434002 Version 1 (Component)cAMP receptor protein (CRP) mutant
BBa_M36475BBa_M36475 Version 1 (Component)Codes for AraC, a transcription factor which represses operon. Arabinose dislodges TF protein.
BBa_I744205BBa_I744205 Version 1 (Component)Tsr (Methyl-accepting Chemotaxis Receptor), E.coli
BBa_K086002BBa_K086002 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ24 followed by YFP
BBa_K086008BBa_K086008 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ28 followed by YFP
BBa_K086006BBa_K086006 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ28 followed by YFP
BBa_K086005BBa_K086005 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ28 followed by YFP
BBa_K086009BBa_K086009 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ32 followed by YFP
BBa_K1114400BBa_K1114400 Version 1 (Component)This is a MoClo level 0 destination vector.
BBa_K1157007BBa_K1157007 Version 1 (Component)Quorum sensing receptor pqsR generator
BBa_K086001BBa_K086001 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ24 followed by YFP reporter
BBa_K086012BBa_K086012 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ32 followed by YFP reporter
BBa_K086007BBa_K086007 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ28 followed by YFP reporter
BBa_K086013BBa_K086013 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ38 followed by YFP reporter
BBa_K086004BBa_K086004 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ24 followed by YFP promoter
BBa_K086014BBa_K086014 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ38 followed by YFP reporter
BBa_K086016BBa_K086016 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ38 followed by YFP reporter
BBa_K086011BBa_K086011 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ32 followed by YFP reporter
BBa_K086003BBa_K086003 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ24 followed by YFP reporter
BBa_K086010BBa_K086010 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ32 followed by YFP reporter
BBa_K086015BBa_K086015 Version 1 (Component)modified Lutz-Bujard LacO promoter,with alternative sigma factor σ38 followed by YFP reporter
BBa_K594011BBa_K594011 Version 1 (Component)A device that can accepts the 3--O-C6-HSL and then produces 3-O-C12-HSL and ECFP reporter.
BBa_M1270BBa_M1270 Version 1 (Component)human Kappa Opioid Receptor composite
BBa_K594014BBa_K594014 Version 1 (Component)A device that can accepts the 3--OH-C14:1-HSL and then produces 3-O-C6-HSL and GFP reporter.
BBa_K1039021BBa_K1039021 Version 1 (Component)Bxb1 integrase and Recombination Directionality Factor (RDF) Under ???Lock and Key??? Control with L
BBa_K165100BBa_K165100 Version 1 (Component)Gli1 bs + LexA bs + mCYC + LexA repressor (mCherryx2 tagged) on pRS304*
BBa_M11410BBa_M11410 Version 1 (Component)Type 2 promoter of sigE gene. Sigma factor regulates light and nitrogen responses, and has been obse
BBa_K1033204BBa_K1033204 Version 1 (Component)pSBLb4E15 E. coli and lactobacilli shuttle vector with erythromycin resistance
BBa_K590046BBa_K590046 Version 1 (Component)AAR-PSB3K3-Lac Inducible w/o LacI
BBa_K809721BBa_K809721 Version 1 (Component)DLD3 promoter + kozak + hoiln(lambda phage) + ADH1 terminator
BBa_K809710BBa_K809710 Version 1 (Component)GAL promoter + kozak + ZIM17 + T7 RNAP + ADH1 terminator
BBa_K563053BBa_K563053 Version 1 (Component)vector pYE, designed for inducible expression of recombinant proteins in S.cerevisivae.
BBa_K165101BBa_K165101 Version 1 (Component)Zif268-HIV bs + LexA bs + mCYC + Zif268-HIV repressor (mCherryx2 tagged) on pRS304*
BBa_K802003BBa_K802003 Version 1 (Component)Shuttle vector for <i> E. coli</i> and <i>B. subtilis</i>
BBa_K896986BBa_K896986 Version 1 (Component)this is a gene about a T cell receptor
BBa_K1363200BBa_K1363200 Version 1 (Component)Anti-LPS factor(LALF) regulated by lacI
BBa_K2092004BBa_K2092004 Version 1 (Component)alcR (incl RBS), ethanol-activated transcription factor from A. nidulans
SEGASEGA_collection Version 1 (Collection)In the Standardized Genome Architecture (SEGA), genomic integration of DNA fragments is enabled by λ-Red recombineering and so-called landing pads that are a common concept in synthetic biology and typically contain features that i) enable insertion of additional genetic elements and ii) provide well-characterized functional parts such as promoters and genes, and iii) provides insulation against genome context-dependent effects. The SEGA landing pads allow for reusable homology regions and time-efficient construction of parallel genetic designs with a minimal number of reagents and handling steps. SEGA bricks, typically synthetic DNA or PCR fragments, are integrated on the genome simply by combining the two reagents (i.e. competent cells and DNA), followed by incubation steps, and successful recombinants are identified by visual inspection on agar plates. The design of the SEGA standard was heavily influenced by the Standard European Vector Architecture (SEVA). SEGA landing pads typically hosts two major genetic “control elements” that influence gene expression on the transcriptional (C1), and translational (C2) level. Furthermore, landing pads contain gadgets such as selection and counterselection markers.